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Goal of this research

@ Markovian Models of queues/buffers — computing stationary
measures

@ Many algorithms have multiple interpretations in different
“languages”, e.g. Newton's method [Bean, O'Reilly, Taylor '05]

» Linear algebra: invert matrices, compute eigenvalues
» Probability: Mj; =P [something]
> Differential equations (sometimes): discretize & f(t) = ...

@ However, the fastest algorithm available, doubling, is 100% abstract
linear algebra

@ We try to gain more probabilistic insight on what it does + turn this
insight into better accuracy
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P;j = P [transition | — j]

If m = |:7T1 D) 7r3] = probabilities of being in the states at time ¢t

Time evolution: w1 = m:P
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Probabilistic interpretations: censoring
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Censoring: ignore time spent in state 1, consider only states S = {2, 3}
Transitions 2 <> 3 may happen directly or through state 1.

Censored Markov chain

P= D +cb"+ ¢ _a b" +ca®bh’ +---=D+c(1—a) b
~— ~—
5—S S—11-11-S
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Probabilistic interpretations: censoring |l
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Can also censor multiple states at the same time

Censored Markov chain
P=D+ CB+ CAB+ CA’B+---=D+C(I—A)'B

Schur complementation on / — P
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Continuous-time Markov chains

Continuous time; transition probability = exponential distribution with
parameter Qj;

Evolution follows %7‘(’(1’) = 7(t)Q, or equivalently 7(t) = m exp(tQ) J
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Fluid queues

Queue, or buffer: “infinite-size bucket” in which fluid (or data) flows in or
out at a rate ¢;, depending on the state of a continuous-time Markov chain

fluid level

0, |
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time

We want the "long-time behavior” (stationary probabilities) of the fluid
level, density vector f(x) of P[level = x|

F. Poloni (U Pisa) Fluid SDA U Adelaide 2014 7 /36



Stationary density and ODEs

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The stationary density vector satisfies

d
af(x)C =f(x)Q

C = diag(cy, .-, ¢n)

Different ways to see it. ..

Differential equations:

The solutions of this linear ODE are linear combinations of the
“elementary solutions”

F)(x) = ujexp(x\i),

with (uj, \;) (left) eigenvector-eigenvalue pairs of QC~!
Throw in boundary conditions. Stable ones? Keep only ®)\ < 0.
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Invariant probabilities and linear algebra

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]
The invariant density satisfies

d
af(x)C =f(x)Q

C = diag(cy, ..., ¢n)

Different ways to see it. ..
Numerical linear algebra
Find the stable invariant subspace of QC 1 ie,

U = span(u1, uo, ..., up)
ui, ..., up with eigenvalues in the left complex half-plane
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Invariant probabilities and probability

Theorem [Karandikar, Kulkarni ‘95, Da Silva Soares Thesis]
The invariant density satisfies

d
&f(x)C =f(x)Q

C = diag(cy, ..., ¢n)

Order states so that C has positive elements on top; a basis for U are the
rows of

-]
for the “first return probabilities” ¥:

¥ij = P[0 — 0 after some time (for the first time), and state i — j]
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Structured doubling algorithm

There's a linear algebra algorithm to solve this:

Structured doubling algorithm

Ex1 = Ex(l — GeHi) ' Ex
Fis1 = Fi(l — HeG) LR
Gis1 = Gk + Ex(l — GHi) ™' G Fi
Hit1 = Hi + Fi(! — HkGi) ™ HiEx

Eo, Fo, Go, Hy = more unilluminating formulas
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What's going on
What's going on: SDA is related to scaling and squaring

@ To look for stable modes, build exp(t#) for a large t, look at what
subspace “goes to 0" and what “to oco”

@ Choose initial step-length -y, start from first-order arccurate

S = exp(vH) ~ (I + %’H)(l - %7—[)‘1

2
@ Then keep squaring: exp(2kyH) = (( .. (52)2 . >2>

-1
) . ok / —Gk Ek 0
o Keep iterates in the form 5% = [0 F ] [—Hk /
Why?

» A method to prevent instabilities from large entries

» Natural in a different problem in control theory
> It works!
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Probabilistic interpretation for SDA — the grand scheme
We construct a discrete-time process with the same behavior

@ Rescaling

@ Discretization

© Doubling

Rescaling: (state-dependent) change of time scale to get +1 slopes

Well understood probabilistically; linear algebra: diagonal similarity

fluid level

0 5 10 15 20 25 30 35 40
time

NODN PO O
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|

Discrete time and £1 rates = discrete space “level”
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Discretization

Probabilists often use P = [ + @, v > 0, as a discretization of the

continuous-time Markov chain Q (uniformization)

Differential equations : explicit Euler's method!

discretize Lf(t) = f(t)Q to fry1 = (Il +7Q)

It turns out that something slightly different happens in SDA:

Theorem (similar to [P., Reis, preprint], [P., thesis])

[,’::,‘; ﬁg] = (1+9Q)(1 = 7Q)"

Differential equations Midpoint method with stepsize 3

Probability on/off switch; observe the queue only if it is on

We encountered before (/ +~H)(/ —yH)™!, but on H = QC~1! instead ]
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Doubling step

So, [EO GO] is a discrete-time Markov chain.
Ho Fo

Observation
After one doubling step

E1 G
Hi F
is still the transition matrix of a DTMC

What do its states represent?

“States” of the queuing model = (¢, s) = (level, state of the DTMC)

@ some states are associated to a +1 rate, we call them @
@ resp. —1 rate, &
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Levels and states

(- 16 1433 (418

({-16 1S (+16
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More states

@ in a state with @ rate, Ey or Gy is applied
@ in a state with © rate, Fg or Hy

269—>369

/ G° / % ‘%/ %/ G°

29<—39

Exi1 =
Fry1=
Giy1 =

Hii1 =

Ex(l — GeH ) LE
Fi(I — HiGi) "1 Fy
Gk + Ex(I — GHi) 1 G Fi
Hy + Fi(l — Hi Gi) "L HEx
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The solution

Censor in this way:

f, 20 -2 39
Go
Go Go Go Go
Ho Ho HO HO
26 N 36

Eit1 = Ex(I — GkHi) ' Ex

Fri1 = F(l — HkGe) ™ Fi

Giy1 = Gi + Ex(I — GxH )1 Gy Fi
Hit1 = Hi + Fr(l — Hyk G) ™ Hk Ex
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Structured doubling algorithm: probabilistic interpretation
E2 E2 E2 E2
e Cwle ue Cwle Tk
Fa Fa Fa F2
Result
Ex = P[0® — 2X before — —1]
Gk = P[0@® — —1 before — 2]
Fi = P[0© — —2* before — 1]
E, = P[0 — 1 before — —2K]

klim Gk = P[0 — —1 before “escaping to infinity"] = ¥
—00
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Tilt your head diagonally

(+4

: . Ex O 0 Hgl [0 O
SDA <= Cyclic reduction on QBD <[O 0] , le 01 ; lo F )

Relation appeared (only algebraically) in [Bini, Meini, P., 2010]
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Work on a torus
Let's “wrap the chain on itself” after two steps

Eo

B o

/GOH /co

19<—29

SR

Fo

Transitions probabilities in this queue are the same as in the big one

0 Go EO 0

[Ell f__ﬁ] = Schur compl of first two blocks in | — ZO 8 8 20
1 1 ’ s

0 FO H() 0
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Part 1l

Componentwise accurate algorithms
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Componentwise accurate linear algebra

Traditional algorithms are normwise accurate: ¥ = v + ¢ ||v||
Suppose v = [1 10‘8} and e =108

v

ll +e, 1078+ 5]
= N~ ~—\—
ok junk

Here we want componentwise accurate algorithms

= [1 e, 1084 10785]

lv—¥| <ev (with <, |-| on components)

Recent componentwise error analysis for doubling [Xue et al., '12]
Algorithms almost ready, but a detail is missing
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Subtraction-free computations

Error amplification in floating point op’s (think “loss of significant digits”)
o bounded by 1 for & (of nonnegative numbers), ©,®
@ can be arbitrarily high for &, e.g., 1.000000000 — 0.9999999999

Avoid all the minuses!

Solution J

Most come from Z-matrices, i.e., matrices with sign pattern
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Triplet representations

Gaussian elimination & inversion of Z-matrices: cancellation only on
diagonal entries
Algorithm (GTH trick [Grassmann et al, '85?])

Let Z be a Z-matrix. If we know its off-diagonal entries and v > 0, w > 0
such that Zv = w, then we can run subtraction-free Gaussian elimination

(offdiag(Z), v, w) is called triplet representation
GE knowing a triplet representation always componentwise perfectly stable!

Theorem [Alfa, Xue, Ye '02]

The GTH algorithms to solve a linear system Zx = b, given (P, v, w) and
b exact to machine precision u, returns X such that

. 4
Ix — X| < §n3ux + lower order terms
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No condition number?

No condition number! How is this even possible? Example:

—1
11
-1 1+¢ o

No way to get around (unstable) subtraction (1 +¢)—1
A triplet representation (blue entries):
1] o
I

1 1

1+¢ 1]

1 -1
-1 1+¢

It already contains €, no need to compute it

The catch: a triplet representation is ill-conditioned to compute from the
matrix entries

But what if we had it for free? J
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Using triplet representations

Structured doubling algorithm

Eo
Ho

Exi1 = Ex(l — GkH)LEx
Fii1 = Fi(l — HeGe) 71 F
Gis1 = Gk + Ex(I — GeHi) LG Fi
Hip1 = Hi + Fi(l — HiGi) " Hi Ex

Go

Fo] = (I +7Q)(/ =@~

Missing ingredient from [Xue et al, '12]:

deriving triplet representations using stochasticity of [H
k

Theorem

(I — GkHk)1 = (HkEx + Fi)1

Ey

Gk
Fi

(I — HkGk)1 = (GiFi + Ex)1 J
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After ¥: matrix exponentials
After computing ¥, invariant measure given by

f(x) = vexp(—Kx)

Z-matrix K and row vector v > 0 computed explicitly from ¥

Now, only matrix exponential needed — lots of literature on it
We use a subtraction-free algorithm [Xue et al., '08; Xue et al., preprint; Shao et
al., preprint]
Idea:
© shift to reduce to a positive matrix: exp(A + zl) = e” exp(A)
@ truncated Taylor series + scaling and squaring:

2

A2\ *
exp(2FA) = ...<I+A+2|>

(Thanks N Higham, MW Shao for useful discussions)
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Numerical results

Figure : Error on the single components. 15 x 15 model with two “hard-to-reach”
states
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b value of [f(1)];

10 absolute error on [f(1)];, plain SDA

(0 absolute error on [f(1)];, sub-free SDA
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Numerical experiments

Figure : pdf f(x) in several points
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Numerical experiments

Figure : pdf f(x) in several points
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Numerical experiments

Figure : 10 x 10 model with states “each slightly harder to reach”
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Numerical experiments

Figure : 10 x 10 model with states “each slightly harder to reach”
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Numerical experiments

Figure : Very simple test queue [Bean, O'Reilly, Taylor '05, Example 3]
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Numerical experiments

Figure : Very simple test queue [Bean, O'Reilly, Taylor '05, Example 3]

10~4

=
I
[e3]
T
|

norm error

—_
3
Ju
N
T
|

—

2
[y
=)}

1073 1072 10! 100 N 10 102  10° 10*

00 plain SDA  [0sub-free SDA
‘e cw_cond (expm)

F. Poloni (U Pisa) Fluid SDA U Adelaide 2014 35/ 36



Conclusions

@ Algorithms: now with triplets!

@ Improved understanding of doubling on the probabilistic,
differential-eq and linear algebra levels

@ Step 1 on the way to get new algorithms

@ Probabilists prefer to use something that they “see”

o Next targets: second-order models (Brownian motion), finite-horizon
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Thanks for your attention! J
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