Probabilistic interpretations and accurate algorithms for stochastic fluid models

Federico Poloni¹
Joint work with Giang T. Nguyen²

 ^{1}U Pisa, Computer Science Dept. ^{2}U Adelaide, School of Math. Sciences

U Adelaide – 23rd January 2014

Goal of this research

- Markovian Models of queues/buffers computing stationary measures
- Many algorithms have multiple interpretations in different "languages", e.g. Newton's method [Bean, O'Reilly, Taylor '05]
 - ▶ Linear algebra: invert matrices, compute eigenvalues
 - ▶ Probability: $M_{ij} = \mathbb{P}$ [something]
 - ▶ Differential equations (sometimes): discretize $\frac{d}{dt}f(t) = \dots$
- However, the fastest algorithm available, doubling, is 100% abstract linear algebra
- We try to gain more probabilistic insight on what it does + turn this insight into better accuracy

$$P = \begin{bmatrix} 0.4 & 0 & 0.6 \\ 0.2 & 0 & 0.8 \\ 0 & 0.5 & 0.5 \end{bmatrix}$$

$$P_{ii} = \mathbb{P}\left[\text{transition } i \to j\right]$$

If
$$\pi_t = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix}$$
 = probabilities of being in the states at time t

Time evolution: $\pi_{t+1} = \pi_t P$

Probabilistic interpretations: censoring

Censoring: ignore time spent in state 1, consider only states $S = \{2, 3\}$ Transitions $2 \leftrightarrow 3$ may happen directly or through state 1.

Censored Markov chain

$$\widehat{P} = \underbrace{D}_{S \to S} + cb^T + \underbrace{c}_{S \to 1} \underbrace{a}_{1 \to 1} \underbrace{b^T}_{1 \to S} + ca^2b^T + \dots = D + c(1-a)^{-1}b^T$$

F. Poloni (U Pisa) Fluid SDA U Adelaide 2014 4 / 36

Probabilistic interpretations: censoring II

Can also censor multiple states at the same time

Censored Markov chain

$$\widehat{P} = D + CB + CAB + CA^2B + \dots = D + C(I - A)^{-1}B$$

Schur complementation on $I - P$

F. Poloni (U Pisa) Fluid SDA U Adelaide 2014 5 / 36

Continuous-time Markov chains

Continuous time; transition probability = exponential distribution with parameter Q_{ij}

Evolution follows $\frac{d}{dt}\pi(t)=\pi(t)Q$, or equivalently $\pi(t)=\pi_0\exp(tQ)$

Fluid queues

Queue, or buffer: "infinite-size bucket" in which fluid (or data) flows in or out at a rate c_i , depending on the state of a continuous-time Markov chain

We want the "long-time behavior" (stationary probabilities) of the fluid level, density vector f(x) of P[level = x]

Stationary density and ODEs

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The stationary density vector satisfies

$$\frac{d}{dx}f(x)C = f(x)Q$$

$$C = \operatorname{diag}(c_1, \ldots, c_n)$$

Different ways to see it...

Differential equations:

The solutions of this linear ODE are linear combinations of the "elementary solutions"

$$f^{(i)}(x) = u_i \exp(x\lambda_i),$$

with (u_i, λ_i) (left) eigenvector-eigenvalue pairs of QC^{-1} Throw in boundary conditions. Stable ones? Keep only $\Re \lambda < 0$.

Invariant probabilities and linear algebra

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The invariant density satisfies

$$\frac{d}{dx}f(x)C = f(x)Q$$

$$C = \operatorname{diag}(c_1, \ldots, c_n)$$

Different ways to see it...

Numerical linear algebra

Find the stable invariant subspace of QC^{-1} , i.e.,

$$\mathcal{U} = \mathsf{span}(u_1, u_2, \dots, u_h)$$

 u_1, \ldots, u_h with eigenvalues in the left complex half-plane

Invariant probabilities and probability

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The invariant density satisfies

$$\frac{d}{dx}f(x)C = f(x)Q$$

$$C = \operatorname{diag}(c_1,\ldots,c_n)$$

Order states so that C has positive elements on top; a basis for $\mathcal U$ are the rows of

$$\begin{bmatrix} I & -\Psi \end{bmatrix}$$

for the "first return probabilities" Ψ :

 $\Psi_{ij} = P[0 woheadrightarrow 0$ after some time (for the first time), and state i woheadrightarrow j]

Structured doubling algorithm

There's a linear algebra algorithm to solve this:

Structured doubling algorithm

$$E_{k+1} = E_k (I - G_k H_k)^{-1} E_k$$

$$F_{k+1} = F_k (I - H_k G_k)^{-1} F_k$$

$$G_{k+1} = G_k + E_k (I - G_k H_k)^{-1} G_k F_k$$

$$H_{k+1} = H_k + F_k (I - H_k G_k)^{-1} H_k E_k$$

 $E_0, F_0, G_0, H_0 = \text{more unilluminating formulas}$

What's going on

What's going on: SDA is related to scaling and squaring

- To look for stable modes, build $\exp(t\mathcal{H})$ for a large t, look at what subspace "goes to 0" and what "to ∞ "
- ullet Choose initial step-length γ , start from first-order arccurate

$$S = \exp(\gamma \mathcal{H}) \approx (I + \frac{\gamma}{2}\mathcal{H})(I - \frac{\gamma}{2}\mathcal{H})^{-1}$$

- Then keep squaring: $\exp(2^k \gamma \mathcal{H}) = \left(\left(\dots \left(S^2\right)^2 \dots\right)^2\right)^2$
- Keep iterates in the form $S^{2^k} = \begin{bmatrix} I & -G_k \\ 0 & F_k \end{bmatrix}^{-1} \begin{bmatrix} E_k & 0 \\ -H_k & I \end{bmatrix}$
 - Why?
 - A method to prevent instabilities from large entries
 - Natural in a different problem in control theory
 - It works!

Probabilistic interpretation for SDA — the grand scheme

We construct a discrete-time process with the same behavior

- Rescaling
- ② Discretization
- Oubling

Rescaling: (state-dependent) change of time scale to get ± 1 slopes

Well understood probabilistically; linear algebra: diagonal similarity

Discrete time and ± 1 rates \implies discrete space "level"

Discretization

Probabilists often use $P=I+\gamma Q,\,\gamma>0$, as a discretization of the continuous-time Markov chain Q (uniformization)

Differential equations: explicit Euler's method!

discretize
$$\frac{d}{dt}f(t)=f(t)Q$$
 to $f_{t+1}=f_t(I+\gamma Q)$

It turns out that something slightly different happens in SDA:

Theorem (similar to [P., Reis, preprint], [P., thesis])

$$\begin{bmatrix} E_0 & G_0 \\ H_0 & F_0 \end{bmatrix} = (I + \gamma Q)(I - \gamma Q)^{-1}$$

Differential equations Midpoint method with stepsize $\frac{\gamma}{2}$

Probability on/off switch; observe the queue only if it is on

We encountered before $(I + \gamma \mathcal{H})(I - \gamma \mathcal{H})^{-1}$, but on $\mathcal{H} = QC^{-1}$ instead

F. Poloni (U Pisa) Fluid SDA U Adelaide 2014 14 / 36

Doubling step

So,
$$\begin{bmatrix} E_0 & G_0 \\ H_0 & F_0 \end{bmatrix}$$
 is a discrete-time Markov chain.

Observation

After one doubling step

$$\begin{bmatrix} E_1 & G_1 \\ H_1 & F_1 \end{bmatrix}$$

is still the transition matrix of a DTMC

What do its states represent?

"States" of the queuing model $= (\ell, s) = (level, state of the DTMC)$

- ullet some states are associated to a +1 rate, we call them \oplus
- resp. -1 rate, \ominus

Levels and states

More states

- in a state with \oplus rate, E_0 or G_0 is applied
- in a state with \ominus rate, F_0 or H_0

$$E_{k+1} = E_k (I - G_k H_k)^{-1} E_k$$

$$F_{k+1} = F_k (I - H_k G_k)^{-1} F_k$$

$$G_{k+1} = G_k + E_k (I - G_k H_k)^{-1} G_k F_k$$

$$H_{k+1} = H_k + F_k (I - H_k G_k)^{-1} H_k E_k$$

The solution

Censor in this way:

$$E_{k+1} = E_k (I - G_k H_k)^{-1} E_k$$

$$F_{k+1} = F_k (I - H_k G_k)^{-1} F_k$$

$$G_{k+1} = G_k + E_k (I - G_k H_k)^{-1} G_k F_k$$

$$H_{k+1} = H_k + F_k (I - H_k G_k)^{-1} H_k E_k$$

Structured doubling algorithm: probabilistic interpretation

Result

$$E_k = P[0 \oplus \twoheadrightarrow 2^k \text{ before } \twoheadrightarrow -1]$$

 $G_k = P[0 \oplus \twoheadrightarrow -1 \text{ before } \twoheadrightarrow 2^k]$
 $F_k = P[0 \ominus \twoheadrightarrow -2^k \text{ before } \twoheadrightarrow 1]$
 $E_k = P[0 \ominus \twoheadrightarrow 1 \text{ before } \twoheadrightarrow -2^k]$

$$\lim_{k\to\infty}G_k=P[0\oplus\twoheadrightarrow-1 \text{ before "escaping to infinity"}]=\Psi$$

Tilt your head diagonally

$$\mathsf{SDA} \iff \mathsf{Cyclic} \ \mathsf{reduction} \ \mathsf{on} \ \mathsf{QBD} \ \left(\begin{bmatrix} E_k & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & H_k \\ G_k & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & F_k \end{bmatrix} \right)$$

Relation appeared (only algebraically) in [Bini, Meini, P., 2010]

Work on a torus

Let's "wrap the chain on itself" after two steps

Transitions probabilities in this queue are the same as in the big one

$$\begin{bmatrix} E_1 & G_1 \\ H_1 & F_1 \end{bmatrix} = \text{Schur compl of first two blocks in } I - \begin{bmatrix} 0 & G_0 & E_0 & 0 \\ H_0 & 0 & 0 & F_0 \\ E_0 & 0 & 0 & G_0 \\ 0 & F_0 & H_0 & 0 \end{bmatrix}$$

F. Poloni (U Pisa) U Adelaide 2014 21 / 36

Part II

Componentwise accurate algorithms

Componentwise accurate linear algebra

Traditional algorithms are normwise accurate: $\tilde{v} = v + \varepsilon \|v\|$ Suppose $v = \begin{bmatrix} 1 & 10^{-8} \end{bmatrix}$ and $\varepsilon = 10^{-8}$

$$\tilde{v} = \begin{bmatrix} \underbrace{1+\varepsilon}, & \underbrace{10^{-8}+\varepsilon}_{\text{junk}} \end{bmatrix}$$

Here we want componentwise accurate algorithms

$$\tilde{\mathbf{v}} = \begin{bmatrix} 1 + \varepsilon, & 10^{-8} + \frac{10^{-8}}{\varepsilon} \end{bmatrix}$$

$$|v - \tilde{v}| \le \varepsilon v$$
 (with \le , $|\cdot|$ on components)

Recent componentwise error analysis for doubling [Xue et al., '12] Algorithms almost ready, but a detail is missing

Subtraction-free computations

Error amplification in floating point op's (think "loss of significant digits")

- bounded by 1 for \oplus (of nonnegative numbers), \odot , \oslash

Solution

Avoid all the minuses!

Most come from Z-matrices, i.e., matrices with sign pattern

Triplet representations

Gaussian elimination & inversion of Z-matrices: cancellation only on diagonal entries

Algorithm (GTH trick [Grassmann et al, '85?])

Let Z be a Z-matrix. If we know its off-diagonal entries and $v>0, w\geq 0$ such that Zv=w, then we can run subtraction-free Gaussian elimination

(offdiag(Z), v, w) is called triplet representation

GE knowing a triplet representation always componentwise perfectly stable!

Theorem [Alfa, Xue, Ye '02]

The GTH algorithms to solve a linear system Zx = b, given (P, v, w) and b exact to machine precision \mathbf{u} , returns \tilde{x} such that

$$|x - \tilde{x}| \le \frac{4}{3} n^3 \mathbf{u} x + \text{lower order terms}$$

No condition number?

No condition number! How is this even possible? Example:

$$\begin{bmatrix} 1 & -1 \\ -1 & 1+\varepsilon \end{bmatrix}^{-1} = \varepsilon^{-1} \begin{bmatrix} 1+\varepsilon & 1 \\ 1 & 1 \end{bmatrix}$$

No way to get around (unstable) subtraction $(1+\varepsilon)-1$ A triplet representation (blue entries):

$$\begin{bmatrix} 1 & -1 \\ -1 & 1+\varepsilon \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}$$

It already contains ε , no need to compute it

The catch: a triplet representation is ill-conditioned to compute from the matrix entries

But what if we had it for free?

Using triplet representations

Structured doubling algorithm

$$E_{k+1} = E_k (I - G_k H_k)^{-1} E_k$$

$$F_{k+1} = F_k (I - H_k G_k)^{-1} F_k$$

$$G_{k+1} = G_k + E_k (I - G_k H_k)^{-1} G_k F_k$$

$$H_{k+1} = H_k + F_k (I - H_k G_k)^{-1} H_k E_k$$

$$\begin{bmatrix} E_0 & G_0 \\ H_0 & F_0 \end{bmatrix} = (I + \gamma Q)(I - \gamma Q)^{-1}$$

Missing ingredient from [Xue et al, '12]:

deriving triplet representations using stochasticity of $\begin{vmatrix} E_k & G_k \\ H_k & F_k \end{vmatrix}$

Theorem

$$(I - G_k H_k) \underline{\mathbf{1}} = (H_k E_k + F_k) \underline{\mathbf{1}} \qquad (I - H_k G_k) \underline{\mathbf{1}} = (G_k F_k + E_k) \underline{\mathbf{1}}$$

After Ψ : matrix exponentials

After computing Ψ , invariant measure given by

$$f(x) = v \exp(-Kx)$$

Z-matrix K and row vector $v \geq 0$ computed explicitly from Ψ

Now, only matrix exponential needed — lots of literature on it We use a subtraction-free algorithm [Xue et al., '08; Xue et al., preprint; Shao et al., preprint]

Idea:

- **9** shift to reduce to a positive matrix: $\exp(A + zI) = e^z \exp(A)$
- 2 truncated Taylor series + scaling and squaring:

$$\exp(2^k A) = \left(\left(\dots \left(I + A + \frac{A^2}{2!} \right)^2 \dots \right)^2 \right)^2$$

(Thanks N Higham, MW Shao for useful discussions)

Numerical results

Figure : Error on the single components. 15×15 model with two "hard-to-reach" states

Figure : pdf f(x) in several points

Figure : pdf f(x) in several points

Figure : 10×10 model with states "each slightly harder to reach"

Figure : 10×10 model with states "each slightly harder to reach"

Figure: Very simple test queue [Bean, O'Reilly, Taylor '05, Example 3]

Figure: Very simple test queue [Bean, O'Reilly, Taylor '05, Example 3]

Conclusions

- Algorithms: now with triplets!
- Improved understanding of doubling on the probabilistic, differential-eq and linear algebra levels
- Step 1 on the way to get new algorithms
- Probabilists prefer to use something that they "see"
- Next targets: second-order models (Brownian motion), finite-horizon

Conclusions

- Algorithms: now with triplets!
- Improved understanding of doubling on the probabilistic, differential-eq and linear algebra levels
- Step 1 on the way to get new algorithms
- Probabilists prefer to use something that they "see"
- Next targets: second-order models (Brownian motion), finite-horizon

Thanks for your attention!