Probabilistic interpretations and accurate algorithms for stochastic fluid models

Federico Poloni ${ }^{1}$
Joint work with Giang T. Nguyen ${ }^{2}$

${ }^{1}$ U Pisa, Computer Science Dept.
${ }^{2} U$ Adelaide, School of Math. Sciences

U Adelaide - $23^{\text {rd }}$ January 2014

Goal of this research

- Markovian Models of queues/buffers - computing stationary measures
- Many algorithms have multiple interpretations in different "languages", e.g. Newton's method [Bean, O'Reilly, Taylor '05]
- Linear algebra: invert matrices, compute eigenvalues
- Probability: $M_{i j}=\mathbb{P}$ [something]
- Differential equations (sometimes): discretize $\frac{d}{d t} f(t)=\ldots$
- However, the fastest algorithm available, doubling, is 100% abstract linear algebra
- We try to gain more probabilistic insight on what it does + turn this insight into better accuracy

$P_{i j}=\mathbb{P}[$ transition $i \rightarrow j]$
If $\pi_{t}=\left[\begin{array}{lll}\pi_{1} & \pi_{2} & \pi_{3}\end{array}\right]=$ probabilities of being in the states at time t
Time evolution: $\pi_{t+1}=\pi_{t} P$

Probabilistic interpretations: censoring

Censoring: ignore time spent in state 1 , consider only states $S=\{2,3\}$
Transitions $2 \leftrightarrow 3$ may happen directly or through state 1 .

Censored Markov chain

$$
\widehat{P}=\underbrace{D}_{S \rightarrow S}+c b^{T}+\underbrace{c}_{S \rightarrow 1} \underbrace{a}_{1 \rightarrow 1} \underbrace{b^{T}}_{1 \rightarrow S}+c a^{2} b^{T}+\cdots=D+c(1-a)^{-1} b^{T}
$$

Probabilistic interpretations: censoring II

Can also censor multiple states at the same time
Censored Markov chain

$$
\widehat{P}=D+C B+C A B+C A^{2} B+\cdots=D+C(I-A)^{-1} B
$$

Schur complementation on $I-P$

Continuous-time Markov chains

Continuous time; transition probability $=$ exponential distribution with parameter $Q_{i j}$

Evolution follows $\frac{d}{d t} \pi(t)=\pi(t) Q$, or equivalently $\pi(t)=\pi_{0} \exp (t Q)$

Fluid queues

Queue, or buffer: "infinite-size bucket" in which fluid (or data) flows in or out at a rate c_{i}, depending on the state of a continuous-time Markov chain

We want the "long-time behavior" (stationary probabilities) of the fluid level, density vector $f(x)$ of $P[$ level $=x]$

Stationary density and ODEs

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The stationary density vector satisfies

$$
\frac{d}{d x} f(x) C=f(x) Q
$$

$C=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$
Different ways to see it. . .
Differential equations:
The solutions of this linear ODE are linear combinations of the "elementary solutions"

$$
f^{(i)}(x)=u_{i} \exp \left(x \lambda_{i}\right)
$$

with $\left(u_{i}, \lambda_{i}\right)$ (left) eigenvector-eigenvalue pairs of $Q C^{-1}$
Throw in boundary conditions. Stable ones? Keep only $\Re \lambda<0$.

Invariant probabilities and linear algebra

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The invariant density satisfies

$$
\frac{d}{d x} f(x) C=f(x) Q
$$

$C=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$
Different ways to see it. . .
Numerical linear algebra
Find the stable invariant subspace of $Q C^{-1}$, i.e.,

$$
\mathcal{U}=\operatorname{span}\left(u_{1}, u_{2}, \ldots, u_{h}\right)
$$

u_{1}, \ldots, u_{h} with eigenvalues in the left complex half-plane

Invariant probabilities and probability

Theorem [Karandikar, Kulkarni '95, Da Silva Soares Thesis]

The invariant density satisfies

$$
\frac{d}{d x} f(x) C=f(x) Q
$$

$C=\operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)$
Order states so that C has positive elements on top; a basis for \mathcal{U} are the rows of

$$
\left[\begin{array}{ll}
I & -\Psi
\end{array}\right]
$$

for the "first return probabilities" Ψ :

$$
\Psi_{i j}=P[0 \rightarrow 0 \text { after some time (for the first time), and state } i \rightarrow j]
$$

Structured doubling algorithm

There's a linear algebra algorithm to solve this:
Structured doubling algorithm

$$
\begin{aligned}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k} \\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k}
\end{aligned}
$$

$E_{0}, F_{0}, G_{0}, H_{0}=$ more unilluminating formulas

What's going on

What's going on: SDA is related to scaling and squaring

- To look for stable modes, build $\exp (t \mathcal{H})$ for a large t, look at what subspace "goes to 0 " and what "to ∞ "
- Choose initial step-length γ, start from first-order arccurate

$$
S=\exp (\gamma \mathcal{H}) \approx\left(I+\frac{\gamma}{2} \mathcal{H}\right)\left(I-\frac{\gamma}{2} \mathcal{H}\right)^{-1}
$$

- Then keep squaring: $\exp \left(2^{k} \gamma \mathcal{H}\right)=\left(\left(\ldots\left(S^{2}\right)^{2} \ldots\right)^{2}\right)^{2}$
- Keep iterates in the form $S^{2^{k}}=\left[\begin{array}{cc}I & -G_{k} \\ 0 & F_{k}\end{array}\right]^{-1}\left[\begin{array}{cc}E_{k} & 0 \\ -H_{k} & I\end{array}\right]$ Why?
- A method to prevent instabilities from large entries
- Natural in a different problem in control theory
- It works!

Probabilistic interpretation for SDA - the grand scheme We construct a discrete-time process with the same behavior
(1) Rescaling
(2) Discretization

- Doubling

Rescaling: (state-dependent) change of time scale to get ± 1 slopes
Well understood probabilistically; linear algebra: diagonal similarity

Discrete time and ± 1 rates \Longrightarrow discrete space "level"

Discretization

Probabilists often use $P=I+\gamma Q, \gamma>0$, as a discretization of the continuous-time Markov chain Q (uniformization)
Differential equations : explicit Euler's method!

$$
\text { discretize } \frac{d}{d t} f(t)=f(t) Q \text { to } f_{t+1}=f_{t}(I+\gamma Q)
$$

It turns out that something slightly different happens in SDA:
Theorem (similar to [P., Reis, preprint], [P., thesis])

$$
\left[\begin{array}{ll}
E_{0} & G_{0} \\
H_{0} & F_{0}
\end{array}\right]=(I+\gamma Q)(I-\gamma Q)^{-1}
$$

Differential equations Midpoint method with stepsize $\frac{\gamma}{2}$
Probability on/off switch; observe the queue only if it is on

We encountered before $(I+\gamma \mathcal{H})(I-\gamma \mathcal{H})^{-1}$, but on $\mathcal{H}=Q C^{-1}$ instead

Doubling step

So, $\left[\begin{array}{ll}E_{0} & G_{0} \\ H_{0} & F_{0}\end{array}\right]$ is a discrete-time Markov chain.

Observation

After one doubling step

$$
\left[\begin{array}{ll}
E_{1} & G_{1} \\
H_{1} & F_{1}
\end{array}\right]
$$

is still the transition matrix of a DTMC
What do its states represent?
"States" of the queuing model $=(\ell, s)=$ (level, state of the DTMC)

- some states are associated to a +1 rate, we call them \oplus
- resp. -1 rate, \ominus

Levels and states

More states

- in a state with \oplus rate, E_{0} or G_{0} is applied
- in a state with \ominus rate, F_{0} or H_{0}

$$
\begin{aligned}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k} \\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k}
\end{aligned}
$$

The solution

Censor in this way:

$$
\begin{aligned}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k} \\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k}
\end{aligned}
$$

Structured doubling algorithm: probabilistic interpretation

Result

$$
\begin{aligned}
& E_{k}=P\left[0 \oplus \rightarrow 2^{k} \text { before } \rightarrow-1\right] \\
& G_{k}=P\left[0 \oplus \rightarrow-1 \text { before } \rightarrow 2^{k}\right] \\
& F_{k}=P\left[0 \ominus \rightarrow-2^{k} \text { before } \rightarrow 1\right] \\
& E_{k}=P\left[0 \ominus \rightarrow 1 \text { before } \rightarrow-2^{k}\right]
\end{aligned}
$$

$$
\lim _{k \rightarrow \infty} G_{k}=P[0 \bigoplus \rightarrow-1 \text { before "escaping to infinity" }]=\Psi
$$

Tilt your head diagonally

SDA \Longleftrightarrow Cyclic reduction on QBD $\left(\left[\begin{array}{cc}E_{k} & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & H_{k} \\ G_{k} & 0\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 0 & F_{k}\end{array}\right]\right)$
Relation appeared (only algebraically) in [Bini, Meini, P., 2010]

Work on a torus

Let's "wrap the chain on itself" after two steps

Transitions probabilities in this queue are the same as in the big one

$$
\left[\begin{array}{cc}
E_{1} & G_{1} \\
H_{1} & F_{1}
\end{array}\right]=\text { Schur compl of first two blocks in I }-\left[\begin{array}{cccc}
0 & G_{0} & E_{0} & 0 \\
H_{0} & 0 & 0 & F_{0} \\
E_{0} & 0 & 0 & G_{0} \\
0 & F_{0} & H_{0} & 0
\end{array}\right]
$$

Part II

Componentwise accurate algorithms

Componentwise accurate linear algebra

Traditional algorithms are normwise accurate: $\tilde{v}=v+\varepsilon\|v\|$
Suppose $v=\left[\begin{array}{ll}1 & 10^{-8}\end{array}\right]$ and $\varepsilon=10^{-8}$

$$
\tilde{v}=[\underbrace{1+\varepsilon}_{\text {ok }}, \underbrace{10^{-8}+\varepsilon}_{\text {junk }}]
$$

Here we want componentwise accurate algorithms

$$
\tilde{v}=\left[\begin{array}{ll}
1+\varepsilon, & 10^{-8}+10^{-8} \varepsilon
\end{array}\right]
$$

$$
|v-\tilde{v}| \leq \varepsilon v \quad(\text { with } \leq,|\cdot| \text { on components })
$$

Recent componentwise error analysis for doubling [Xue et al., '12]
Algorithms almost ready, but a detail is missing

Subtraction-free computations

Error amplification in floating point op's (think "loss of significant digits")

- bounded by 1 for \oplus (of nonnegative numbers), \odot, \varnothing
- can be arbitrarily high for \ominus, e.g., $1.000000000-0.9999999999$

Solution

Avoid all the minuses!
Most come from Z-matrices, i.e., matrices with sign pattern

$$
\left[\begin{array}{cccc}
+ & - & - & - \\
- & + & - & - \\
- & - & + & - \\
- & - & - & +
\end{array}\right]
$$

Triplet representations

Gaussian elimination \& inversion of Z-matrices: cancellation only on diagonal entries

Algorithm (GTH trick [Grassmann et al, '85?])

Let Z be a Z-matrix. If we know its off-diagonal entries and $v>0, w \geq 0$ such that $Z v=w$, then we can run subtraction-free Gaussian elimination
(offdiag $(Z), v, w)$ is called triplet representation
GE knowing a triplet representation always componentwise perfectly stable!
Theorem [Alfa, Xue, Ye '02]
The GTH algorithms to solve a linear system $Z x=b$, given (P, v, w) and b exact to machine precision \mathbf{u}, returns \tilde{x} such that

$$
|x-\tilde{x}| \leq \frac{4}{3} n^{3} \mathbf{u} x+\text { lower order terms }
$$

No condition number?

No condition number! How is this even possible? Example:

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1+\varepsilon
\end{array}\right]^{-1}=\varepsilon^{-1}\left[\begin{array}{cc}
1+\varepsilon & 1 \\
1 & 1
\end{array}\right]
$$

No way to get around (unstable) subtraction $(1+\varepsilon)-1$ A triplet representation (blue entries):

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1+\varepsilon
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
\varepsilon
\end{array}\right]
$$

It already contains ε, no need to compute it
The catch: a triplet representation is ill-conditioned to compute from the matrix entries

But what if we had it for free?

Using triplet representations

Structured doubling algorithm

$$
\begin{aligned}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k} \\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k} \\
{\left[\begin{array}{cc}
E_{0} & G_{0} \\
H_{0} & F_{0}
\end{array}\right] } & =(I+\gamma Q)(I-\gamma Q)^{-1}
\end{aligned}
$$

Missing ingredient from [Xue et al, '12]:
deriving triplet representations using stochasticity of $\left[\begin{array}{ll}E_{k} & G_{k} \\ H_{k} & F_{k}\end{array}\right]$
Theorem

$$
\left(I-G_{k} H_{k}\right) \underline{\mathbf{1}}=\left(H_{k} E_{k}+F_{k}\right) \underline{\mathbf{1}} \quad\left(I-H_{k} G_{k}\right) \underline{\mathbf{1}}=\left(G_{k} F_{k}+E_{k}\right) \underline{\mathbf{1}}
$$

After Ψ : matrix exponentials

After computing Ψ, invariant measure given by

$$
f(x)=v \exp (-K x)
$$

Z-matrix K and row vector $v \geq 0$ computed explicitly from Ψ
Now, only matrix exponential needed - lots of literature on it
We use a subtraction-free algorithm [Xue et al., '08; Xue et al., preprint; Shao et al., preprint]
Idea:
(1) shift to reduce to a positive matrix: $\exp (A+z I)=e^{z} \exp (A)$
(2) truncated Taylor series + scaling and squaring:

$$
\exp \left(2^{k} A\right)=\left(\left(\ldots\left(1+A+\frac{A^{2}}{2!}\right)^{2} \ldots\right)^{2}\right)^{2}
$$

(Thanks N Higham, MW Shao for useful discussions)

Numerical results

Figure : Error on the single components. 15×15 model with two "hard-to-reach" states

\diamond	value of $[f(1)]_{i}$
$\square \square$	absolute error on $[f(1)]_{i}$, plain SDA
$\left[\square\right.$ absolute error on $[f(1)]_{i}$, sub-free SDA	

Numerical experiments

Figure: pdf $f(x)$ in several points

$$
\begin{aligned}
& \text { Dr plain SDA } \text { Dsub-free SDA } \\
& \text { cw_cond (expm) }
\end{aligned}
$$

Numerical experiments

Figure: pdf $f(x)$ in several points

Numerical experiments

Figure : 10×10 model with states "each slightly harder to reach"

$$
\begin{aligned}
& \text { Dr plain SDA } \text { [Dsub-free SDA } \\
& { }^{\circ} \text { cw_cond (expm) }
\end{aligned}
$$

Numerical experiments

Figure : 10×10 model with states "each slightly harder to reach"

$$
\begin{aligned}
& \text { plain SDA } \text { lasub-free SDA } \\
& { }^{\circ} \text { cw_cond (expm) }
\end{aligned}
$$

Numerical experiments

Figure : Very simple test queue [Bean, O'Reilly, Taylor '05, Example 3]

$$
\begin{aligned}
& \text { 7r plain SDA } \text { D sub-free SDA } \\
& { }^{\circ} \text { cw_cond (expm) }
\end{aligned}
$$

Numerical experiments

Figure : Very simple test queue [Bean, O'Reilly, Taylor '05, Example 3]

$$
\begin{aligned}
& \text { Ha plain SDA } \text { sub-free SDA } \\
& { }^{\circ}{ }^{\circ} \text { Cw_cond (expm) }
\end{aligned}
$$

Conclusions

- Algorithms: now with triplets!
- Improved understanding of doubling on the probabilistic, differential-eq and linear algebra levels
- Step 1 on the way to get new algorithms
- Probabilists prefer to use something that they "see"
- Next targets: second-order models (Brownian motion), finite-horizon

Conclusions

- Algorithms: now with triplets!
- Improved understanding of doubling on the probabilistic, differential-eq and linear algebra levels
- Step 1 on the way to get new algorithms
- Probabilists prefer to use something that they "see"
- Next targets: second-order models (Brownian motion), finite-horizon

Thanks for your attention!

