Cyclic reduction and index reduction/shifting for a second-order probabilistic problem

Federico Poloni ${ }^{1}$
Joint work with Giang T. Nguyen ${ }^{2}$
${ }^{1}$ U Pisa, Computer Science Dept.
${ }^{2}$ U Adelaide, School of Math. Sciences

Numerical Algebra, Matrix Theory,
Differential-Algebraic Equations, and Control Theory
May 2015, Berlin

A historical finding

A historical finding

Figure: Riccati family tomb, cathedral of Treviso [photo: courtesy A. Giustiniani]

A distant cousin

One family member is still alive and very active, the Riccati equation.
(1) Large-scale problems.
(2) Dense Riccati equations as structured eigenproblems.
(3) Nonsymmetric versions and variants in other applications.

This talk mostly about 3 , but first some advertising more related to 2 .

Application: linear-quadratic optimal control [Mehrmann, 91]

$$
\mathcal{E}\left[\begin{array}{l}
\dot{x}(t) \\
\dot{\mu}(t)
\end{array}\right]=\mathcal{A}\left[\begin{array}{l}
x(t) \\
\mu(t)
\end{array}\right], \quad x(0)=x_{0},\left[\begin{array}{l}
x(t) \\
\mu(t)
\end{array}\right] \text { bounded. }
$$

Equivalently: look for stable invariant subspace V of $\mathcal{H}=\mathcal{E}^{-1} \mathcal{A}$.
Riccati bases People first tried $V=\left[\begin{array}{l}1 \\ X\end{array}\right]: X$ has a natural meaning.
Cons: X may have large entries.
Orthogonal bases $V=Q R$ (thin), look for Q.
Cons: Structure ($X=X^{T}$) may be lost.

Permuted Riccati bases

Theorem [Knuth '86], [Mehrmann, P '12]

Given $V \in \mathbb{R}^{n \times m}$ with full column rank, one can factor it as

$$
V=P\left[\begin{array}{c}
I_{m} \\
Z
\end{array}\right] R, \quad P \text { permutation, } R \in \mathbb{R}^{m \times m} \text { invertible, }\left|Z_{i j}\right| \leq 1
$$

Example:

Use it as you would use thin QR: $P\left[\begin{array}{l}l \\ Z\end{array}\right]$ spans the same subspace as V and is well-conditioned.

How do we use $P\left[\begin{array}{l}! \\ z\end{array}\right] R$?

Structure preservation: if $V=\left[\begin{array}{l}1 \\ x\end{array}\right]$ with $X=X^{*}$, we can always have $Z=Z^{*}$ (details omitted) [Mehrmann, $\left.\mathrm{P}^{\prime} 12\right]$.

We can use it to solve (generalized/extended) Riccati equations. Great numerical properties.

Matrix pencils: we can replace $\lambda \mathcal{E}-\mathcal{A}$ with $\lambda(M \mathcal{E})-(M \mathcal{A})$ for an invertible M (same eigenvalues and right eigenvectors).

$$
M(\lambda \mathcal{E}-\mathcal{A})=\lambda\left[\begin{array}{ccc}
* & 1 & * \\
* & 0 & * \\
* & 0 & *
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & * \\
0 & 1 & * \\
1 & 0 & *
\end{array}\right], \quad|*| \leq 1
$$

Structured versions available (Hamiltonian, symplectic. ..)
Matlab toolbox https://bitbucket.org/fph/pgdoubling/

A continuous queuing model

Model: data flow in/out of a buffer at different rates according to environment state (continuous-time Markov chain) [Da Silva Soares, 2005]

Same problem, different structure

Steady state: find $w(x)$ satisfying

$$
\mathcal{E}\left[\begin{array}{l}
\dot{w}_{1}(x) \\
\dot{w}_{2}(x)
\end{array}\right]=\mathcal{A}\left[\begin{array}{l}
w_{1}(x) \\
w_{2}(x)
\end{array}\right], \quad w_{1}(0)=w_{1,0}, \quad\left[\begin{array}{l}
w_{1}(x) \\
w_{2}(x)
\end{array}\right] \text { bounded }
$$

\mathcal{E} diagonal, \mathcal{A} singular M-matrix.
Equivalently: look for stable invariant subspace of $\mathcal{E}^{-1} \mathcal{A}$.
People first tried $V=\left[\begin{array}{c}1 \\ x\end{array}\right]: X$ has a natural meaning. This time no stability issues: $\|X\|_{\infty}<1$.

Symmetry-based structure is replaced by nonnegativity-based structure

How do we solve these problems?

Idea 1 Compute $S=\exp (\mathcal{H} t)$ for a large t. (huge entries).
Stable subspace: "ker S "; unstable subspace: "ker S^{-1} ".
Both determined without numerical trouble from a representation $S=N_{*}^{-1} M_{*}$.

Idea 2 Replace $\exp (\mathcal{H} t)$ with $\left(I+\frac{t}{n} \mathcal{H}\right)^{n}$, computed by repeated squaring.
All we need is a method to compute $\left(N_{2}^{-1} M_{2}\right)=\left(N^{-1} M\right)^{2}$

$$
(N, M) \mapsto\left(N_{2}, M_{2}\right), \quad \text { doubling map. }
$$

The differential equation picture

$$
\begin{aligned}
\exp (\mathcal{H} t) & \leftrightarrow \text { Propagating ODE } \dot{u}=\mathcal{H} u . \\
\left(I+\frac{t}{n} \mathcal{H}\right)^{n} & \leftrightarrow \text { Explicit Euler's method. Other methods possible. }
\end{aligned}
$$

[Anderson, '78] [Chu et al, '93+] [Benner, Byers 1998] [Guo et al, '06]

How to get accuracy?

Componentwise accurate algorithms [Wang et al, '12] [Nguyen, P '14]
Error $\left|\tilde{X}_{i j}-X_{i j}\right| \leq C\left|X_{i j}\right|$ for each i, j. Tiny elements accurate. Main idea: Avoid all subtractions!

Linear systems $M x=b$ with diag-dominant M-matrices solved with full machine precision (regardless of condition number) given: [O'Cinneide, '93]

- off-diagonal part, and
- diagonal excess M1.

Example / Idea

$M=\left[\begin{array}{cc}1 & -1 \\ -1 & 1+\varepsilon\end{array}\right]$ almost singular; can't get ε.
Instead: compute/store red entries in $\left[\begin{array}{cc}1 & -1 \\ -1 & 1+\varepsilon\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ \varepsilon\end{array}\right]$. Here's ε !

Second-order problems

Now add Brownian motion in some states!

time

Second order model

$$
V \ddot{w}(x)-D \dot{w}(x)-K w(x)=0, \quad \text { same constraints. }
$$

V diagonal with nonnegative entries (variances), D diagonal, K M-matrix.

Want: stable invariant pair (U, X) such that $V U X^{2}-D U X-K U=0$.

Solution strategy [Latouche, Nguyen '15] [Nguyen, P]

Same plan! Start from $V U X^{2}-D U X-K U=0$,
(1) Discretize $\mu=1+h \lambda$, or $\mu=\frac{1}{1-h \lambda}$, or $\mu=\frac{1+h \lambda / 2}{1-h \lambda / 2}$.

Rational transformation of matrix polynomial [Noferini '12] [M $\left.{ }^{4}, 14\right]$.
Gives $A U Y^{2}-B U Y+C U=0, Y=f(X)$.
(2) Square Given $A \mu^{2}-B \mu+C$, construct $A_{2} \mu^{2}+B_{2} \mu+C_{2}$ with squared eigenvalues. This is cyclic reduction [Bini, Meini review '09].

We need sign properties for componentwise accuracy. How to get them?
"Interesting because it's boring"
(1) Step-size h needs to be small enough.
(2) Only the explicit method above works, otherwise can't undo $Y=f(X)$.
Point 2 specific to $2^{\text {nd }}$-order case.

Singular V

Choice of h We need $V_{i i}-D_{i i} h-K_{i i} h^{2} \geq 0$: works for small h if $V_{i i}>0$.
What if $V_{i i}=0$? Differentiate some equations!
Same idea as index reduction techniques [Mehrmann, Kunkel, book]. Some care needed: not all rows where V is singular, only when $D_{i i}<0$.

$$
\begin{aligned}
& V \lambda^{2}-D \lambda-K=\left[\begin{array}{lll}
+ & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \lambda^{2}-\left[\begin{array}{ccc}
* & 0 & 0 \\
0 & + & 0 \\
0 & 0 & -
\end{array}\right] \lambda+\left[\begin{array}{ccc}
* & + & + \\
+ & * & + \\
+ & + & *
\end{array}\right] \\
& A \mu^{2}-B \mu+C=\left[\begin{array}{lll}
+ & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & +
\end{array}\right] \mu^{2}-\left[\begin{array}{ccc}
+ & 0 & - \\
0 & + & - \\
0 & 0 & *
\end{array}\right] \mu+\left[\begin{array}{lll}
+ & + & 0 \\
+ & + & 0 \\
+ & + & 0
\end{array}\right]
\end{aligned}
$$

Again, interesting because it's boring. Same tools, but for entirely different reasons (sign preservation).

Experiments

Competitors:

New This componentwise-accurate algorithm [Nguyen, Poloni]
Eig Eigendecomposition-based [Karandikar, Kulkarni '95]
Sign Sign function-based method [Agapie, Sohraby '01]
QZ QZ-based method [Unknown?]

n	kind	New	Eig	Sign	QZ
12	random	$\mathbf{9 . 7 e - 1 5}$	$1.9 \mathrm{e}-14$	$8.6 \mathrm{e}-13$	$6.9 \mathrm{e}-14$
12	rand,imbalanced	$\mathbf{2 . 1 e - 1 2}$	$6.0 \mathrm{e}-08$	$3.6 \mathrm{e}-09$	$1.1 \mathrm{e}-09$
30	random	$\mathbf{4 . 5 e - 1 4}$	$2.3 \mathrm{e}-12$	$1.5 \mathrm{e}-09$	$1.4 \mathrm{e}-12$
30	rand,imbalanced	$\mathbf{3 . 7 e - 1 1}$	$1.5 \mathrm{e}-03$	$7.5 \mathrm{e}+02$	$4.6 \mathrm{e}-04$
100	random	$\mathbf{3 . 3 e - 1 3}$	$5.5 \mathrm{e}-01$	$1.0 \mathrm{e}-07$	$2.4 \mathrm{e}-10$
100	rand,imbalanced	$\mathbf{2 . 1 e - 1 0}$	$1.3 \mathrm{e}-01$	$2.4 \mathrm{e}+01$	$1.5 \mathrm{e}-07$

Figure: Residual $\left\|V U X^{2}-D U X-K U\right\| /\|U\|$.

Conclusions

- BVPs and Riccati equations outside control theory.
- Similar problems, different structures. Different motivations, similar choices.
- Fascinating theory: differential equations, matrix polynomials, matrix functions, inverse-free methods...

A smaller reflection of the variety of methods, techniques and applications that I have encountered in Volker's research.

Conclusions

- BVPs and Riccati equations outside control theory.
- Similar problems, different structures. Different motivations, similar choices.
- Fascinating theory: differential equations, matrix polynomials, matrix functions, inverse-free methods...

A smaller reflection of the variety of methods, techniques and applications that I have encountered in Volker's research.

Many thanks!

