Cyclic reduction and index reduction/shifting for a second-order probabilistic problem

Federico Poloni¹ Joint work with Giang T. Nguyen²

¹U Pisa, Computer Science Dept. ²U Adelaide, School of Math. Sciences

Numerical Algebra, Matrix Theory, Differential-Algebraic Equations, and Control Theory May 2015, Berlin

A historical finding

A historical finding

Figure: Riccati family tomb, cathedral of Treviso [photo: courtesy A. Giustiniani]

One family member is still alive and very active, the Riccati equation.

- Large-scale problems.
- 2 Dense Riccati equations as structured eigenproblems.
- **③** Nonsymmetric versions and variants in other applications.

This talk mostly about 3, but first some advertising more related to 2.

Application: linear-quadratic optimal control [Mehrmann, 91]

$$\mathcal{E}\begin{bmatrix}\dot{x}(t)\\\dot{\mu}(t)\end{bmatrix} = \mathcal{A}\begin{bmatrix}x(t)\\\mu(t)\end{bmatrix}, \quad x(0) = x_0, \begin{bmatrix}x(t)\\\mu(t)\end{bmatrix}$$
 bounded.

Equivalently: look for stable invariant subspace V of $\mathcal{H} = \mathcal{E}^{-1}\mathcal{A}$.

Riccati bases People first tried $V = \begin{bmatrix} I \\ X \end{bmatrix}$: X has a natural meaning. Cons: X may have large entries. Orthogonal bases V = QR (thin), look for Q.

Cons: Structure $(X = X^T)$ may be lost.

Permuted Riccati bases

Theorem [Knuth '86], [Mehrmann, P '12]

Given $V \in \mathbb{R}^{n \times m}$ with full column rank, one can factor it as

$$V = P \begin{bmatrix} I_m \\ Z \end{bmatrix} R$$
, P permutation, $R \in \mathbb{R}^{m \times m}$ invertible, $|Z_{ij}| \leq 1$.

Example:

Use it as you would use thin QR: $P\begin{bmatrix} I\\ Z\end{bmatrix}$ spans the same subspace as V and is well-conditioned.

How do we use $P\begin{bmatrix} I\\ Z\end{bmatrix}R$?

Structure preservation: if $V = \begin{bmatrix} I \\ X \end{bmatrix}$ with $X = X^*$, we can always have $Z = Z^*$ (details omitted) [Mehrmann, P '12].

We can use it to solve (generalized/extended) Riccati equations. Great numerical properties.

Matrix pencils: we can replace $\lambda \mathcal{E} - \mathcal{A}$ with $\lambda(M\mathcal{E}) - (M\mathcal{A})$ for an invertible M (same eigenvalues and right eigenvectors).

$$M(\lambda \mathcal{E} - \mathcal{A}) = \lambda egin{bmatrix} * & 1 & * \ * & 0 & * \ * & 0 & * \end{bmatrix} - egin{bmatrix} 0 & 0 & * \ 0 & 1 & * \ 1 & 0 & * \end{bmatrix}, \qquad |*| \leq 1.$$

Structured versions available (Hamiltonian, symplectic...)

Matlab toolbox https://bitbucket.org/fph/pgdoubling/

A continuous queuing model

Model: data flow in/out of a buffer at different rates according to environment state (continuous-time Markov chain) [Da Silva Soares, 2005]

Same problem, different structure

Steady state: find w(x) satisfying

$$\mathcal{E}\begin{bmatrix}\dot{w}_1(x)\\\dot{w}_2(x)\end{bmatrix} = \mathcal{A}\begin{bmatrix}w_1(x)\\w_2(x)\end{bmatrix}, \quad w_1(0) = w_{1,0}, \quad \begin{bmatrix}w_1(x)\\w_2(x)\end{bmatrix} \text{ bounded.}$$

\mathcal{E} diagonal, \mathcal{A} singular M-matrix. Equivalently: look for stable invariant subspace of $\mathcal{E}^{-1}\mathcal{A}$.

People first tried $V = \begin{bmatrix} I \\ X \end{bmatrix}$: X has a natural meaning. This time no stability issues: $\|X\|_{\infty} < 1$.

Symmetry-based structure is replaced by nonnegativity-based structure

How do we solve these problems?

Idea 1 Compute $S = \exp(\mathcal{H}t)$ for a large t. (huge entries). Stable subspace: "ker S"; unstable subspace: "ker S^{-1} ".

Both determined without numerical trouble from a representation $S = N_*^{-1} M_*$.

Idea 2 Replace $\exp(\mathcal{H}t)$ with $(I + \frac{t}{n}\mathcal{H})^n$, computed by repeated squaring. All we need is a method to compute $(N_2^{-1}M_2) = (N^{-1}M)^2$

 $(N, M) \mapsto (N_2, M_2),$ doubling map.

The differential equation picture

 $\exp(\mathcal{H}t) \leftrightarrow \text{Propagating ODE } \dot{u} = \mathcal{H}u.$ $(I + \frac{t}{n}\mathcal{H})^n \leftrightarrow \text{Explicit Euler's method. Other methods possible.}$

[Anderson, '78] [Chu et al, '93+] [Benner, Byers 1998] [Guo et al, '06]

How to get accuracy?

Componentwise accurate algorithms [Wang et al, '12] [Nguyen, P '14]

Error $|\tilde{X}_{ij} - X_{ij}| \le C|X_{ij}|$ for each i, j. Tiny elements accurate. Main idea: Avoid all subtractions!

Linear systems $M_X = b$ with diag-dominant *M*-matrices solved with full machine precision (regardless of condition number) given: [O'Cinneide, '93]

- off-diagonal part, and
- diagonal excess M1.

Example / Idea $M = \begin{bmatrix} 1 & -1 \\ -1 & 1 + \varepsilon \end{bmatrix} \text{ almost singular; can't get } \varepsilon.$ Instead: compute/store red entries in $\begin{bmatrix} 1 & -1 \\ -1 & 1 + \varepsilon \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}. \text{ Here's } \varepsilon!$

Second-order problems

Now add Brownian motion in some states!

Second order model

 $V\ddot{w}(x) - D\dot{w}(x) - Kw(x) = 0$, same constraints.

V diagonal with nonnegative entries (variances), D diagonal, K M-matrix.

Want: stable invariant pair (U, X) such that $VUX^2 - DUX - KU = 0$.

Solution strategy [Latouche, Nguyen '15] [Nguyen, P]

Same plan! Start from $VUX^2 - DUX - KU = 0$,

O Discretize $\mu = 1 + h\lambda$, or $\mu = \frac{1}{1-h\lambda}$, or $\mu = \frac{1+h\lambda/2}{1-h\lambda/2}$. Rational transformation of matrix polynomial [Noferini '12] [M⁴, 14]. Gives $AUY^2 - BUY + CU = 0$, Y = f(X).

Square Given $A\mu^2 - B\mu + C$, construct $A_2\mu^2 + B_2\mu + C_2$ with squared eigenvalues. This is cyclic reduction [Bini, Meini review '09].

We need sign properties for componentwise accuracy. How to get them?

"Interesting because it's boring"

- Step-size *h* needs to be small enough.
- Only the explicit method above works, otherwise can't undo Y = f(X).

Point 2 specific to 2nd-order case.

Singular V

Choice of *h* We need $V_{ii} - D_{ii}h - K_{ii}h^2 \ge 0$: works for small *h* if $V_{ii} > 0$.

What if $V_{ii} = 0$? Differentiate some equations!

Same idea as index reduction techniques [Mehrmann, Kunkel, book]. Some care needed: not all rows where V is singular, only when $D_{ii} < 0$.

$$V\lambda^{2} - D\lambda - K = \begin{bmatrix} + & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \lambda^{2} - \begin{bmatrix} * & 0 & 0 \\ 0 & + & 0 \\ 0 & 0 & - \end{bmatrix} \lambda + \begin{bmatrix} * & + & + \\ + & * & + \\ + & + & * \end{bmatrix}$$
$$A\mu^{2} - B\mu + C = \begin{bmatrix} + & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & + \end{bmatrix} \mu^{2} - \begin{bmatrix} + & 0 & - \\ 0 & + & - \\ 0 & 0 & * \end{bmatrix} \mu + \begin{bmatrix} + & + & 0 \\ + & + & 0 \\ + & + & 0 \\ + & + & 0 \end{bmatrix}$$

Again, interesting because it's boring. Same tools, but for entirely different reasons (sign preservation).

Experiments

Competitors:

New This componentwise-accurate algorithm [Nguyen, Poloni]

- Eig Eigendecomposition-based [Karandikar, Kulkarni '95]
- Sign Sign function-based method [Agapie, Sohraby '01]
 - QZ QZ-based method [Unknown?]

n	kind	New	Eig	Sign	QZ
12	random	9.7e-15	1.9e-14	8.6e-13	6.9e-14
12	rand, imbalanced	2.1e-12	6.0e-08	3.6e-09	1.1e-09
30	random	4.5e-14	2.3e-12	1.5e-09	1.4e-12
30	rand, imbalanced	3.7e-11	1.5e-03	7.5e+02	4.6e-04
100	random	3.3e-13	5.5e-01	1.0e-07	2.4e-10
100	rand, imbalanced	2.1e-10	1.3e-01	2.4e+01	1.5e-07

Figure: Residual $\|VUX^2 - DUX - KU\| / \|U\|$.

Conclusions

- BVPs and Riccati equations outside control theory.
- Similar problems, different structures. Different motivations, similar choices.
- Fascinating theory: differential equations, matrix polynomials, matrix functions, inverse-free methods...

A smaller reflection of the variety of methods, techniques and applications that I have encountered in Volker's research.

Conclusions

- BVPs and Riccati equations outside control theory.
- Similar problems, different structures. Different motivations, similar choices.
- Fascinating theory: differential equations, matrix polynomials, matrix functions, inverse-free methods...

A smaller reflection of the variety of methods, techniques and applications that I have encountered in Volker's research.

Many thanks!