Inverse-free and permuted bases methods for algebraic Riccati equations

Federico Poloni ${ }^{1}$

Contains joint work with: T. Haqiri ${ }^{2}$, V. Mehrmann ${ }^{3}$, N. Strabić ${ }^{4}$

1: Department of Computer Science, University of Pisa, Italy.
2: Shahid Bahonar University, Kerman, Iran.
3: Institute for Mathematics, Technical University of Berlin, Germany.
4: University of Manchester, UK.
$7^{\text {th }}$ European Congress of Mathematics
Berlin, July 2016

Equations and subspaces

What we all do here solving algebraic Riceati equations computing invariant subspaces.

$$
A^{*} X+X A+Q-X G X=0 \Longleftrightarrow\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right]\left[\begin{array}{l}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right](A-G X)
$$

CARE $\Longleftrightarrow H \mathcal{U} \subseteq \mathcal{U}$ with subspace in the Riccati basis $\left[\begin{array}{l}I \\ X\end{array}\right]$.

Usually a good idea to use other bases: what if e.g. $\mathcal{U} \approx \mathrm{im}\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 2 & 2\end{array}\right]$?

Permuted Riccati bases

We can get an identity in correspondence of any invertible submatrix.

Example

$$
U=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
1 & 1 & 2 \\
3 & 5 & 8
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 0 & 1
\end{array}\right]
$$

We write this as $U \sim P\left[\begin{array}{l}l \\ Y\end{array}\right], P$ permutation matrix.
\sim notation for "spans the same subspace as".
Theorem [Knuth '84, Gu-Eisenstat '96]
Each full-col-rank U has a permuted Riccati basis $P\left[\begin{array}{l}I \\ y\end{array}\right]$ with $\left|Y_{i j}\right| \leq 1$
Why is it good? Identity + small entries $=$ well-conditioned basis matrix.

How to compute them?

The theory Choose submatrix B with maximal $|\operatorname{det} B|$. Cramer's rule on
$[$ row of $Y]=[$ row of $U] B^{-1}$ gives $\left|Y_{i j}\right|=\frac{\mid \operatorname{det}(\text { other submatrix }) \mid}{|\operatorname{det} B|} \leq 1$.

The practice Find $\left|Y_{i j}\right|>1$, update basis simplex-algorithm-style

Principal pivot transform

The update process viewed in term of Y :

$$
Y=\left[\begin{array}{cc}
\alpha & u \\
v^{*} & Y_{22}
\end{array}\right] \mapsto\left[\begin{array}{cc}
\alpha^{-1} & u \alpha^{-1} \\
-\alpha^{-1} v^{*} & Y_{22}-u \alpha^{-1} v^{*}
\end{array}\right]
$$

Known as PPT [Tsatsomeros,'00]; interesting "partial inversion" structure.
Quiz: apply this n times on a $n \times n$ matrix...

$$
Y=\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \mapsto\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \mapsto\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \mapsto\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]=? ?
$$

What's happening?

Principal pivot transform

The update process viewed in term of Y :

$$
Y=\left[\begin{array}{cc}
\alpha & u \\
v^{*} & Y_{22}
\end{array}\right] \mapsto\left[\begin{array}{cc}
\alpha^{-1} & u \alpha^{-1} \\
-\alpha^{-1} v^{*} & Y_{22}-u \alpha^{-1} v^{*}
\end{array}\right]
$$

Known as PPT [Tsatsomeros,'00]; interesting "partial inversion" structure.
Quiz: apply this n times on a $n \times n$ matrix...

$$
Y=\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \mapsto\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \mapsto\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \mapsto\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]=? ?
$$

What's happening?

Answer: ?? $=Y^{-1}$, because we switch from $\left[\begin{array}{l}I \\ Y\end{array}\right]$ to $\left[\begin{array}{c}Y^{-1} \\ I\end{array}\right]$.
Gaussian elimination in disguise. "Alien linear algebra".

Reduction process

Pictures from [P. Strabić '15]

A structured version

Why is $P\left[\begin{array}{l}1 \\ Y\end{array}\right]$ preferable to orthonormal bases?
Because it has a structure-preserving version!
To solve Riccati equations, we need Lagrangian subspaces. Image of $U \in \mathbb{C}^{2 n \times n}$ Lagrangian if $U^{H} J_{2 n} U=0$, with $J_{2 n}=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$. In Riccati basis: im $\left[\begin{array}{c}1 \\ x\end{array}\right]$ Lagrangian $\Longleftrightarrow X$ Hermitian.

Theorem [Mehrmann, P. '12]
Every Lagrangian subspace im U has a Lagrangian permuted graph basis $U \sim P\left[\begin{array}{l}I \\ Y\end{array}\right]$ with:

- P permutation+sign changes,
- $Y=Y^{H}$,
- $\left|Y_{i j}\right| \leq \sqrt{2}$.

Lagrangian permuted Riccati bases

Example

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 / 2 & -5 / 6 & 1 / 6 \\
-1 / 2 & -1 / 2 & 1 / 2 \\
-1 / 2 & -1 / 6 & 5 / 6 \\
0 & 0 & 1
\end{array}\right] .
$$

Permutations here can only swap $i \leftrightarrow n+i$.
Allows us to store and operate on exactly Lagrangian subspace stably.

An application: Riccati verification [Haqiri P. '16]

Problem

Compute a guaranteed enclosure for the stabilizing solution of a CARE $A^{*} X+X A+Q-X G X=0$ in $\mathcal{O}\left(n^{3}\right)$.

Last week in ILAS conference (ask me for the slides!); one of the ideas:

$$
\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right]\left[\begin{array}{l}
1 \\
X
\end{array}\right]=\left[\begin{array}{l}
I \\
X
\end{array}\right](A-G X)
$$

replaced by a CARE for Y :
$\left[\begin{array}{cc}\hat{A} & -\hat{G} \\ -\hat{Q} & -\hat{A}^{*}\end{array}\right]\left[\begin{array}{c}I \\ Y\end{array}\right]=\left[\begin{array}{c}I \\ Y\end{array}\right](\hat{A}-\hat{G} Y), \quad\left[\begin{array}{cc}\hat{A} & -\hat{G} \\ -\hat{Q} & -\hat{A}^{*}\end{array}\right]=P^{-1}\left[\begin{array}{cc}A & -G \\ -Q & -A^{*}\end{array}\right] P$.
Then, $X=U_{2} U_{1}^{-1}$, with $\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]=P\left[\begin{array}{l}1 \\ Y\end{array}\right]$.

Experiments: relative width of \mathbf{X}

Results for pencils

Matrix pencils in a nutshell: a pair $\left(L_{0}, L_{1}\right)$ "represents" the matrix $L_{0}^{-1} L_{1}$.
Some operations can be performed implicitly on the pair, no matter if L_{0} is ill-conditioned or even singular (inverse-free algorithms).
In this talk: we only assume $\left[\begin{array}{ll}L_{0} & L_{1}\end{array}\right]$ has full row rank.

Definition

$$
\left(L_{0}, L_{1}\right) \sim\left(M_{0}, M_{1}\right) \quad \text { if } \quad L_{0}=B M_{0}, L_{1}=B M_{1} \text { for } B \text { square invertible. }
$$

Note that

$$
\left(L_{0}, L_{1}\right) \sim\left(M_{0}, M_{1}\right) \Longleftrightarrow\left[\begin{array}{ll}
L_{0} & L_{1}
\end{array}\right]^{H} \sim\left[\begin{array}{ll}
M_{0} & M_{1}
\end{array}\right]^{H} .
$$

So one can use results on subspaces to normalize pencils

Example

$$
\left(L_{0}, L_{1}\right) \sim\left(\left[\begin{array}{lll}
1 & * & 0 \\
0 & * & 1 \\
0 & * & 0
\end{array}\right],\left[\begin{array}{lll}
* & * & 0 \\
* * & * \\
* & * & 0
\end{array}\right]\right), \quad|*| \leq 1 .
$$

Results for structured pencils [Mehrmann P. '12]

Symplectic pencils: $L_{i} \in \mathbb{C}^{2 n \times 2 n}$ such that $L_{1} J_{2 n} L_{1}^{H}=L_{0} J_{2 n} L_{0}^{H}$.
$\left[\begin{array}{ll}L_{0} & L_{1}\end{array}\right]^{H}$ is essentially Lagrangian (after some row/sign changes).

$$
\left(\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * \\
0 & 0 & * \\
0 & 0 & * & *
\end{array}\right],\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & 0 & 0 \\
* & * & 1 & 0 \\
* & * & 0 & 1
\end{array}\right]\right) .
$$

- Among each two same-color columns, one is a column of $I_{2 n}$
- The other entries satisfy $|*| \leq \sqrt{2}$, and can be pieced together (modulo signs) into a Hermitian matrix

Hamiltonian pencils: $L_{i} \in \mathbb{C}^{2 n \times 2 n}$ such that $L_{1} J_{2 n} L_{0}^{H}=-L_{0} J_{2 n} L_{1}^{H}$.

$$
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
* & * * & * \\
* & * & * \\
* & * & * \\
* & * * & *
\end{array}\right]\right) .
$$

Deflating the " 3×3 control pencil" [Mehrmann P. '13]

Common control-theory structure:

$$
\left(\left[\begin{array}{ccc}
0 & I_{n} & 0 \\
-I_{n} & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & Q & S \\
B^{T} & S^{T} & R
\end{array}\right]\right)
$$

Traditional way to handle it (recast in our language): first put an identity in

$$
\left(\left[\begin{array}{ccc}
I_{n} & 0 & 0 \\
0 & I_{n} & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & I_{m}
\end{array}\right]\right) .
$$

Block triangular; deflate and work on Hamiltonian pencil in orange.
Key point: invertibing R or determining its kernel.

A different deflation

Why must the identity go there?

$$
\left(\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & 0
\end{array}\right],\left[\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
* & * & I_{m}
\end{array}\right]\right)
$$

Put columns of I in half of the green and blue columns.
Example Perturbation of 'the death pencil'

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & \varepsilon
\end{array}\right]\right) \sim\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & -1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

The deflation process is well-conditioned no matter how small ε is. (unlike many other algorithms.)

Preserving definiteness [P. Strabić '16]

Definition (new) If $U=\left[\begin{array}{c}1 \\ x\end{array}\right]$ with $X \succ 0$, we call im U definite Lagrangian. Semidefinite Lagrangian defined by continuity.
"Hidden structure" that plays a role in CARE theory, e.g., solution existence / semidefiniteness.

Theorem [P. Strabić '16]

If U Lagrangian (semi)definite, then all matrices Y appearing in $U \sim P\left[\begin{array}{l}\hat{y} \\ y\end{array}\right]$ are quasidefinite (with blocks depending on P).

Most subspaces appearing in practice are Lagrangian semidefinite: e.g., Hamiltonian pencils from "ABCD" problems associated to

$$
Y=\left[\begin{array}{cc}
-C^{*} C & A^{*} \tag{1}\\
A & B B^{*}
\end{array}\right] .
$$

Algorithms to do PPTs updating generators A, B, C directly [P. Strabić '16], https://bitbucket.org/fph/pgdoubling-quad.

Solving dense Riccati equations

Doubling algorithm a "pencil version" of the matrix sign iteration $H \mapsto \frac{1}{2}\left(H+H^{-1}\right):$

$$
\left(L_{0}, L_{1}\right) \mapsto\left(2 M_{0} L_{1}, M_{1} L_{1}+M_{0} L_{0}\right) \quad \text { with }\left[-M_{0} M_{1}\right]\left[\begin{array}{c}
L_{1} \\
L_{0}
\end{array}\right]=0 .
$$

Two things needed at each step:

- Left kernel of $\left[\begin{array}{c}L_{1} \\ L_{0}\end{array}\right]$ with permuted Riccati bases:

$$
\left[\begin{array}{ll}
-Y & I
\end{array}\right] P^{-1} P\left[\begin{array}{c}
I \\
Y
\end{array}\right]=0
$$

- Hamiltonian pencil representation: permuted Riccati basis of $\left[\begin{array}{c}L_{1}^{H} \\ L_{0}^{H}\end{array}\right]$.

Software: PGDoubling

Matlab library to work with dense Riccati equations and permuted Riccati bases.
\oplus More reliable than Matlab's care and other competing algorithms on benchmark examples.
\ominus Matlab code (no mex), not optimized for speed.
https://bitbucket.org/fph/pgdoubling

Figure: Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]

Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]

Large scale AREs

What we do emputing invariant subspaces solving algebraic Riccati equations (in the large and sparse case).

- Solution subspaces can be represented cheaply as $U \sim\left[\begin{array}{c}I \\ Z Z^{T}\end{array}\right]$, with Z tall skinny.
- Other bases, e.g. orthogonal, are not as practical.

A first attempt to use these ideas:
(1) Run a standard solution algorithm (ADI) keeping not Z but $\left(L_{0}, L_{1}\right)$ such that $Z=L_{1} L_{0}^{-1}$.
(2) Convert this to $\left[\begin{array}{c}I \\ Z Z^{T}\end{array}\right] \sim\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$, with U_{1}, U_{2} 'storage-sparse'.

How does it work? No improvement in "typical" cases; subspace residual improves in some ill-conditioned examples, though.

Large scale AREs

Theorem [Mehrmann, P. '15]
Given orthogonal $\left[\begin{array}{l}L_{0} \\ L_{1}\end{array}\right]$ such that $Z=L_{1} L_{0}^{-1} \in \mathbb{C}^{n \times m}$, we can build (quickly and stably) tall skinny V_{i} such that and

$$
\left[\begin{array}{c}
I \\
Z Z^{T}
\end{array}\right] \sim V=\left[\begin{array}{c}
I-V_{1} V_{2}^{T} \\
V_{3} V_{4}^{T}
\end{array}\right], \quad \kappa(V) \leq \frac{\sqrt{3}}{\sqrt{2}}\left(m n \tau^{2}+n \tau\right)
$$

Main idea: convert $X=\boxed{L_{1}} L_{0}^{-1}$ into $X=M_{0} M_{1}^{-1}$ using kernel trick

$$
[\boxed{Y} \boxed{-I}] P^{T} P\left[\begin{array}{|l}
\boxed{I} \\
Y \\
\hline
\end{array}\right]=0
$$

Experiments (random $A, B \approx$ smallest eigenvectors)

Conclusions

Useful primitives

- Converting between equivalent CAREs (e.g., in interval verification)
- Representing structured pencils (e.g., to deflate infinite eigenvalues) Solving small dense CAREs
- Very robust solution algorithm.

Solving large-scale CAREs

- We can use these techniques also in sparse problems.
- Visible improvements only in edge cases (for now).

Take-home message:

- Bases with identities are a very promising tool for structured matrix computations. Try them!

Conclusions

Useful primitives

- Converting between equivalent CAREs (e.g., in interval verification)
- Representing structured pencils (e.g., to deflate infinite eigenvalues) Solving small dense CAREs
- Very robust solution algorithm.

Solving large-scale CAREs

- We can use these techniques also in sparse problems.
- Visible improvements only in edge cases (for now).

Take-home message:

- Bases with identities are a very promising tool for structured matrix computations. Try them!

Thanks for your attention!

