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Equations and subspaces

What we all do here solving algebraic Riccati equations computing
invariant subspaces.

A∗X + XA + Q − XGX = 0 ⇐⇒
[

A −G
−Q −A∗

] [
I
X

]
=
[

I
X

]
(A− GX )

CARE ⇐⇒ HU ⊆ U with subspace in the Riccati basis
[

I
X

]
.

Usually a good idea to use other bases: what if e.g. U ≈ im


1 1
1 1
2 1
2 2

?
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Permuted Riccati bases
We can get an identity in correspondence of any invertible submatrix.

Example

U =


1 2 3
4 5 6
7 8 9
1 1 2
3 5 8

 ∼

1 0 0
0.5 0.5 0
0 1 0
0 0 1
2 0 1

 .

We write this as U ∼ P
[ I

Y
]
, P permutation matrix.

∼ notation for “spans the same subspace as”.

Theorem [Knuth ’84, Gu–Eisenstat ’96]

Each full-col-rank U has a permuted Riccati basis P
[ I

Y
]
with |Yij | ≤ 1

Why is it good? Identity + small entries = well-conditioned basis matrix.
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How to compute them?

The theory Choose submatrix B with maximal |detB|. Cramer’s rule on

[
row of Y

]
=
[
row of U

]
B−1 gives |Yij | =

|det (other submatrix)|
|detB| ≤ 1.

The practice Find |Yij | > 1, update basis simplex-algorithm–style

1 0 0
0.5 0.5 0
0 1 0
0 0 1
2 0 1




this row out

this row in
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Principal pivot transform
The update process viewed in term of Y :

Y =
[
α u
v∗ Y22

]
7→
[

α−1 uα−1

−α−1v∗ Y22 − uα−1v∗

]
.

Known as PPT [Tsatsomeros,’00]; interesting “partial inversion” structure.

Quiz: apply this n times on a n × n matrix. . .

Y =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 7→
∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 7→
∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 7→
∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 =??

What’s happening?

Answer: ?? = Y −1, because we switch from
[

I
Y

]
to
[

Y −1
I

]
.

Gaussian elimination in disguise. “Alien linear algebra”.
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Reduction process
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A structured version

Why is P
[ I

Y
]
preferable to orthonormal bases?

Because it has a structure-preserving version!

To solve Riccati equations, we need Lagrangian subspaces.
Image of U ∈ C2n×n Lagrangian if UHJ2nU = 0, with J2n =

[
0 In

−In 0

]
.

In Riccati basis: im
[ I

X
]
Lagrangian ⇐⇒ X Hermitian.

Theorem [Mehrmann, P. ’12]

Every Lagrangian subspace imU has a Lagrangian permuted graph basis
U ∼ P

[ I
Y
]
with:

P permutation+sign changes,
Y = Y H ,
|Yij | ≤

√
2.
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Lagrangian permuted Riccati bases

Example 

1 0 0
0 1 0
0 0 1
1 2 3
2 4 5
3 5 6


∼



1 0 0
0 1 0
−1/2 −5/6 1/6
−1/2 −1/2 1/2
−1/2 −1/6 5/6
0 0 1


.

Permutations here can only swap i ↔ n + i .

Allows us to store and operate on exactly Lagrangian subspace stably.
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An application: Riccati verification [Haqiri P. ’16]

Problem
Compute a guaranteed enclosure for the stabilizing solution of a CARE
A∗X + XA + Q − XGX = 0 in O(n3).

Last week in ILAS conference (ask me for the slides!); one of the ideas:[
A −G
−Q −A∗

] [
I
X

]
=
[

I
X

]
(A− GX )

replaced by a CARE for Y :[
Â −Ĝ
−Q̂ −Â∗

] [
I
Y

]
=
[

I
Y

]
(Â−ĜY ),

[
Â −Ĝ
−Q̂ −Â∗

]
= P−1

[
A −G
−Q −A∗

]
P.

Then, X = U2U−1
1 , with

[
U1
U2

]
= P

[
I
Y

]
.
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Experiments: relative width of X
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Results for pencils
Matrix pencils in a nutshell: a pair (L0, L1) “represents” the matrix L−1

0 L1.
Some operations can be performed implicitly on the pair, no matter if L0 is
ill-conditioned or even singular (inverse-free algorithms).
In this talk: we only assume

[
L0 L1

]
has full row rank.

Definition
(L0, L1) ∼ (M0,M1) if L0 = BM0, L1 = BM1 for B square invertible.

Note that

(L0, L1) ∼ (M0,M1) ⇐⇒
[
L0 L1

]H
∼
[
M0 M1

]H
.

So one can use results on subspaces to normalize pencils

Example

(L0, L1) ∼
([ 1 ∗ 0

0 ∗ 1
0 ∗ 0

]
,
[ ∗ ∗ 0

∗ ∗ 0
∗ ∗ 1

])
, |∗| ≤ 1.
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Results for structured pencils [Mehrmann P. ’12]

Symplectic pencils: Li ∈ C2n×2n such that L1J2nLH
1 = L0J2nLH

0 .[
L0 L1

]H
is essentially Lagrangian (after some row/sign changes).

([ 1 0 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

]
,

[ ∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 1 0
∗ ∗ 0 1

])
.

Among each two same-color columns, one is a column of I2n

The other entries satisfy |∗| ≤
√
2, and can be pieced together

(modulo signs) into a Hermitian matrix

Hamiltonian pencils: Li ∈ C2n×2n such that L1J2nLH
0 = −L0J2nLH

1 .([ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
,

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

])
.
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Deflating the “3× 3 control pencil” [Mehrmann P. ’13]

Common control-theory structure:
 0 In 0
−In 0 0
0 0 0

 ,
 0 A B

AT Q S
BT ST R


 .

Traditional way to handle it (recast in our language): first put an identity
in 

In 0 0
0 In 0
0 0 0

 ,
∗ ∗ 0
∗ ∗ 0
∗ ∗ Im


 .

Block triangular; deflate and work on Hamiltonian pencil in orange.

Key point: invertibing R or determining its kernel.
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A different deflation

Why must the identity go there?
∗ ∗ 0
∗ ∗ 0
∗ ∗ 0

 ,
∗ ∗ 0
∗ ∗ 0
∗ ∗ Im




Put columns of I in half of the green and blue columns.

Example Perturbation of ‘the death pencil’
 0 1 0
−1 0 0
0 0 0

 ,
0 0 1
0 0 0
1 0 ε


 ∼


1 0 0
0 ε 0
0 −1 0

 ,
0 0 0
1 0 0
0 0 1




The deflation process is well-conditioned no matter how small ε is.
(unlike many other algorithms.)
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Preserving definiteness [P. Strabić ’16]

Definition (new) If U =
[ I

X
]
with X � 0, we call imU definite Lagrangian.

Semidefinite Lagrangian defined by continuity.

“Hidden structure” that plays a role in CARE theory, e.g., solution
existence / semidefiniteness.

Theorem [P. Strabić ’16]

If U Lagrangian (semi)definite, then all matrices Y appearing in
U ∼ P

[ I
Y
]
are quasidefinite (with blocks depending on P).

Most subspaces appearing in practice are Lagrangian semidefinite: e.g.,
Hamiltonian pencils from “ABCD” problems associated to

Y =
[
−C∗C A∗

A BB∗

]
. (1)

Algorithms to do PPTs updating generators A,B,C directly [P. Strabić ’16],
https://bitbucket.org/fph/pgdoubling-quad.
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Solving dense Riccati equations

Doubling algorithm a “pencil version” of the matrix sign iteration
H 7→ 1

2(H + H−1):

(L0, L1) 7→ (2M0L1,M1L1 + M0L0) with [ −M0 M1 ]
[

L1
L0

]
= 0.

Two things needed at each step:
Left kernel of

[
L1
L0

]
with permuted Riccati bases:

[
−Y I

]
P−1P

[
I
Y

]
= 0.

Hamiltonian pencil representation: permuted Riccati basis of
[

LH
1

LH
0

]
.
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Software: PGDoubling

Matlab library to work with dense Riccati equations
and permuted Riccati bases.

⊕ More reliable than Matlab’s care and other
competing algorithms on benchmark examples.

	 Matlab code (no mex), not optimized for speed.

https://bitbucket.org/fph/pgdoubling
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Figure: Relative subspace residual for the 33 CAREX problems in [Chu et al., ’07]
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Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., ’07]
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Large scale AREs

What we do computing invariant subspaces solving algebraic Riccati
equations (in the large and sparse case).

Solution subspaces can be represented cheaply as U ∼
[

I
ZZT

]
,

with Z tall skinny.
Other bases, e.g. orthogonal, are not as practical.

A first attempt to use these ideas:
1 Run a standard solution algorithm (ADI) keeping not Z but (L0, L1)

such that Z = L1L−1
0 .

2 Convert this to
[

I
ZZT

]
∼
[
U1
U2

]
, with U1,U2 ‘storage-sparse’.

How does it work? No improvement in “typical” cases; subspace residual
improves in some ill-conditioned examples, though.
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Large scale AREs

Theorem [Mehrmann, P. ’15]

Given orthogonal
[

L0
L1

]
such that Z = L1L−1

0 ∈ Cn×m, we can build
(quickly and stably) tall skinny Vi such that and[

I
ZZT

]
∼ V =

[
I − V1V T

2
V3V T

4

]
, κ(V ) ≤

√
3√
2

(mnτ2 + nτ).

Main idea: convert X = L1 L0
−1 into X = M0

−1

M1 using kernel trick

Y −I

PT P


I

Y

 = 0.
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Experiments (random A, B ≈ smallest eigenvectors)
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Figure: Comparison of RKSM, ADI and IF-ADI
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Conclusions
Useful primitives

Converting between equivalent CAREs (e.g., in interval verification)
Representing structured pencils (e.g., to deflate infinite eigenvalues)

Solving small dense CAREs
Very robust solution algorithm.

Solving large-scale CAREs
We can use these techniques also in sparse problems.
Visible improvements only in edge cases (for now).

Take-home message:

Bases with identities are a very promising tool for structured matrix
computations. Try them!

Thanks for your attention!
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