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Equations and subspaces

What we all do here selving-algebraic Riecati-equations computing

invariant subspaces.

. _ A —G|[1]_
AX + XA+ Q- XGX =0 + l—Q _A*] M_l

CARE <= HU C U with subspace in the Riccati basis l)I(]

Usually a good idea to use other bases: what if e.g. U ~ im

NN = =
N = ==
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Permuted Riccati bases

We can get an identity in correspondence of any invertible submatrix.

Example
1 2 3 1 0 O
4 5 6 05 05 0
U=1|7 8 9|~|0 1 O
11 2 0 0 1
3 5 8 2 0 1

We write this as U ~ P[], P permutation matrix.

~ notation for “spans the same subspace as”.

Theorem [Knuth '84, Gu—Eisenstat '96]
Each full-col-rank U has a permuted Riccati basis P [ |, ] with |Y};| <1 J

Why is it good? ldentity + small entries = well-conditioned basis matrix.
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How to compute them?

The theory Choose submatrix B with maximal |det B|. Cramer’s rule on

det (oth bmatri
[row of Y} = [row of U} B~! gives |Yj| = [det (o |ZrEtsuB’ma i) <1l

The practice Find |Yj;| > 1, update basis simplex-algorithm—style

1 0 Opg— this row out
05 05 0

0 1 0

0 0 1
— this row in
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Principal pivot transform

The update process viewed in term of Y:

—1 1
o u (6 uc
Y=, —
vt Yoo —a by Yoo — ualv*

Known as PPT [Tsatsomeros,'00]; interesting “partial inversion” structure.

Quiz: apply this n times on a n x n matrix. . .
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What's happening?
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What's happening?

I
Gaussian elimination in disguise. “Alien linear algebra”.

Answer: ?? = Y !, because we switch from [” to [Y_l].
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Reduction process

30 (a) iteration 1 (b) iteration 10
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iteration iteration

Pictures from [P. Strabi¢ '15]
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A structured version

Why is P[] preferable to orthonormal bases?
Because it has a structure-preserving version!

To solve Riccati equations, we need Lagrangian subspaces.
Image of U € C2"*" Lagrangian if U" U = 0, with b, = [—oln g’}
In Riccati basis: im [ } ] Lagrangian <= X Hermitian.

Theorem [Mehrmann, P. '12]

Every Lagrangian subspace im U has a Lagrangian permuted graph basis
U~ P[] with:

@ P permutation-+sign changes,

e Y =VYH,

° |Vl <v2.
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Lagrangian permuted Riccati bases

Example
[1 0 O] [ 1 0 0]
010 0 1 0
0 01 —1/2 —5/6 1/6
1 2 3|7 |=12 —12 1
2 4 5 -1/ —1/6 5/6
356 |0 o0 1]

Permutations here can only swap i <+ n+ i.

Allows us to store and operate on exactly Lagrangian subspace stably.
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An application: Riccati verification [Hagiri P. '16]

Problem
Compute a guaranteed enclosure for the stabilizing solution of a CARE
A*X + XA+ Q — XGX = 0in O(nd).

Last week in ILAS conference (ask me for the slides!); one of the ideas:
A —-G||I /
replaced by a CARE for Y:
A =G| |1 1,5 & A -G LA -G
A A = A— Y N A = P P
N N L ] L e
_ —1 . U | I
Then, X = U, U !, with [ (1] = P[}].
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Experiments: relative width of X
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Results for pencils
Matrix pencils in a nutshell: a pair (Lo, L1) “represents” the matrix LalLl.

Some operations can be performed implicitly on the pair, no matter if Ly is
ill-conditioned or even singular (inverse-free algorithms).

In this talk: we only assume [Lo Ll} has full row rank.

Definition
(Lo, L1) ~ (Mo, My) if Lo = BMy, Ly = BM; for B square invertible. J

Note that
(LQ, L]_) ~ (Mo, Ml) < [Lo Ll}H ~ {Mo Ml]H .

So one can use results on subspaces to normalize pencils

Example
(tor ) ~ ([g28]. [138]), <t
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Results for structured pencils [Mehrmann P. '12]

Symplectic pencils: L; € C27%2" such that Ly, L} = LOJ2nL(I)_I.

H
{Lo Ll] is essentially Lagrangian (after some row/sign changes).

10 * % * %00
01 %% * %00
00+« |2]|*%x10 .
00 * % * % 01

@ Among each two same-color columns, one is a column of b,

@ The other entries satisfy |*| < v/2, and can be pieced together
(modulo signs) into a Hermitian matrix

Hamiltonian pencils: L; € C2m%2n gych that Ly, LH = —L0J2,,Lf.

1000
0100
0010
0001
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Deflating the “3 x 3 control pencil” [Mehrmann P. '13]

Common control-theory structure:

0 I, 0 0 A B
-1, 0 0of,|AT Q@ S
0 0 0| |BT ST R

Traditional way to handle it (recast in our language): first put an identity
in

I, 00 0
0 I, of, 0
0 0 I

Block triangular; deflate and work on Hamiltonian pencil in orange.

Key point: invertibing R or determining its kernel.
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A different deflation

Why must the identity go there?

0 * % 0
O|,|*x % O
0 * % Iy

Put columns of I in half of the green and blue columns.

Example Perturbation of ‘the death pencil’

0o 10] [oo1 1 0 o] [o oo
—100/,/0 00| ~|lo e of,[{1t00
0 00| |10 ¢ 0 -1 0| (001

The deflation process is well-conditioned no matter how small ¢ is.
(unlike many other algorithms.)
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Preserving definiteness [p. strabic '16]

Definition (new) If U = [ }] with X > 0, we call im U definite Lagrangian.
Semidefinite Lagrangian defined by continuity.

“Hidden structure” that plays a role in CARE theory, e.g., solution
existence / semidefiniteness.

Theorem [P. Strabi¢ '16]

If U Lagrangian (semi)definite, then all matrices Y appearing in
U ~ P[] are quasidefinite (with blocks depending on P).

Most subspaces appearing in practice are Lagrangian semidefinite: e.g.,
Hamiltonian pencils from “ABCD"” problems associated to

v _ [—C*C A*]. a

~—

A BB*

Algorithms to do PPTs updating generators A, B, C directly [P. Strabi¢ '16],
https://bitbucket.org/fph/pgdoubling-quad.
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https://bitbucket.org/fph/pgdoubling-quad

Solving dense Riccati equations

Doubling algorithm a “pencil version” of the matrix sign iteration
H~— %(H + H™Y):

(Lo, L1) = (2MoLy, MiLs + MoLo)  with [-mo m][ 2] =o.

Two things needed at each step:

o Left kernel of HH with permuted Riccati bases:

-v QPAP[L]:Q

I . . . A L
@ Hamiltonian pencil representation: permuted Riccati basis of [LL].
0
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Software: PGDoubling

= SBitbucket -

'

PGDoubling
MATLAB package to

. Matlab library to work with dense Riccati equations
and permuted Riccati bases.

% 00BBYo@E i
g

@ More reliable than Matlab’s care and other
competing algorithms on benchmark examples.

. © Matlab code (no mex), not optimized for speed.

https://bitbucket.org/fph/pgdoubling J
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Figure: Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]
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Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]
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Large scale AREs

What we do eomputinginvariant-subspaees solving algebraic Riccati

equations (in the large and sparse case).

/
@ Solution subspaces can be represented cheaply as U ~ [ZZ ]

with Z tall skinny.

@ Other bases, e.g. orthogonal, are not as practical.

A first attempt to use these ideas:

@ Run a standard solution algorithm (ADI) keeping not Z but (Lo, L1)
such that Z = L1L,".

. / Up . . )
@ Convert this to [ZZT] ~ lUJ, with Ui, U, ‘storage-sparse’.

How does it work? No improvement in “typical” cases; subspace residual
improves in some ill-conditioned examples, though.
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Large scale

Theorem [Mehrmann, P. '15]

Given orthogonal “‘1’} such that Z = LlLa1 € C"™ M we can build
(quickly and stably) tall skinny V; such that and

NIEAZ
] VY 74

/
7z’

AREs

] . Kk(V) < Z=(mnt? + n7).

V3
V2

Main idea: convert X =

F. Poloni (U Pisa)

g_l into X =

—1 || PTP

Inverse-free Riccati

v

-1
Mo @ using kernel trick

=0.

Y
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Experiments (random A, B ~ smallest eigenvectors)

subspace res.

equation res.
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Conclusions

Useful primitives
o Converting between equivalent CAREs (e.g., in interval verification)
@ Representing structured pencils (e.g., to deflate infinite eigenvalues)
Solving small dense CAREs
@ Very robust solution algorithm.
Solving large-scale CAREs
@ We can use these techniques also in sparse problems.

@ Visible improvements only in edge cases (for now).

Take-home message:

@ Bases with identities are a very promising tool for structured matrix
computations. Try them!
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Thanks for your attention! J
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