Permuted Graph Bases for Solving Large and Sparse Matrix Equations

Volker Mehrmann (TU Berlin, mehrmann@math.tu-berlin.de) and Federico Poloni (U Pisa, fpoloni@di.unipi.it)

Inverse-free representation

A matrix $\mathbf{M}=\mathbf{A E} \mathbf{E}^{-1}$ is uniquely determined by the subspace span $\left[\begin{array}{l}\mathbf{E} \\ \mathbf{A}\end{array}\right]$ (not $\left[\begin{array}{l}\mathbf{E} \\ \mathbf{A}\end{array}\right]$ itself! May transform $\mathbf{E} \rightarrow \mathbf{E K}, \mathbf{A} \rightarrow \mathbf{A K}$).
Plan: store and work on pair (\mathbf{E}, \mathbf{A}) rather than \mathbf{M}.
Most linear algebra operations ("primitives") can be done without
inversions working on (\mathbf{E}, \mathbf{A}) [Benner, Byers 2006]: e.g., addition:

$$
\mathrm{A}_{1} \mathrm{E}_{1}^{-1}+\mathrm{A}_{2} \mathrm{E}_{2}^{-1}=\left(\mathrm{A}_{1} \mathrm{P}+\mathrm{A}_{2} \mathrm{Q}\right)\left(\mathrm{E}_{1} \mathrm{Q}\right)^{-1}
$$

where \mathbf{P}, \mathbf{Q} chosen so that $\left[\begin{array}{l}\mathbf{P} \\ \mathbf{Q}\end{array}\right]=\operatorname{ker}\left[-\mathbf{E}_{2} \mathbf{E}_{1}\right]$
Advantage: more accurate when $\mathbf{E}_{\mathbf{1}}$ and/or \mathbf{E}_{2} almost singular

Permuted graph bases

Pair (E, A) \leftrightarrow basis of the subspace $\leftrightarrow \mathbf{K}$ above. How to choose it? - Orthogonal bases: everyone likes them!
-Permuted graph bases: another possible choice. What are they? Theorem [Knuth, 1986
Every \mathbf{m}-dim subspace of $\mathbb{R}^{\mathbf{n}}$ is spanned by a matrix $\tilde{\mathbf{U}} \in \mathbb{R}^{\mathbf{n} \times \mathbf{m}}$ that has \mathbf{I}_{m} as a submatrix and all other entries $\leq \mathbf{1}$.
We can bound the condition number $\boldsymbol{\kappa}_{2}(\tilde{\mathrm{U}})$ for this basis, numerically "almost as good" as orthogonal bases.

Example

$\mathbf{U}=\left[\begin{array}{ll}1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8\end{array}\right]$, PG basis \(\tilde{U}=\left[\begin{array}{cc}0 \& 1

0.333 \& 0.667

0.667 \& 0.333

1 \& 0\end{array}\right] \quad\)| span $U=$ span \tilde{U} |
| :--- |
| $\kappa_{2}(U)=22.76$ |
| $\kappa_{2}(\tilde{U})=1.34$ |

What's the advantage over orthogonal?

- Sparser, stable representation of the subspace
- Some primitives much more efficient, e.g. $\mathbf{M} \rightarrow \mathbf{M}^{\top}$
- Easier to preserve some structures (Lagrangian/Hamiltonian/symplectic).

Lyapunov equations and ADI

We have already used permuted graph bases machinery for dense matrix equations [M., P. 2012]. Time to move to large sparse!

Lyapunov equation

$$
\begin{equation*}
F^{\top} \mathbf{X}+\mathbf{X F}+\mathrm{GG}^{\top}=0 \tag{LE}
\end{equation*}
$$

$\mathbf{F} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ large sparse, $\mathbf{G} \in \mathbb{R}^{\mathbf{n} \times \boldsymbol{m}}$ tall skinny. Looking for solution
$\mathbf{X}=\mathbf{X}^{\boldsymbol{\top}} \geqslant \mathbf{0}$; often in applications it's (approximately) low-rank
Main workhorse: Low Rank - ADI algorithm [Benner, Li, Penzl 2008]

LR-ADI algorithm

- Store at each step \mathbf{k} a low-rank factor $\mathbf{Z}_{\mathbf{k}}$ of current solution guess $\mathbf{X}_{\mathbf{k}}$; start from $\mathbf{Z}_{0}=[]$
- At each step, generate new component $\mathbf{W}_{\mathrm{k}+1}$ using a rational-Krylov-like iteration and set $\tilde{\mathbf{Z}}_{\mathrm{k}+1}=\left[\mathbf{Z}_{\mathbf{k}} \mathbf{W}_{\mathrm{k}+1}\right]$
- Compress $\tilde{\mathbf{Z}}_{\mathrm{k}+1}$ to a thinner $\mathbf{Z}_{\mathbf{k}+1}$ such that $\tilde{\mathbf{Z}}_{\mathrm{k}+1} \tilde{\mathbf{Z}}_{\mathrm{k}+1}^{\top} \approx \mathbf{Z}_{\mathrm{k}+1} \mathbf{Z}_{\mathbf{k}+1}^{\top}$

Typical setting: $\mathbf{n} \gg \mathbf{m}$; generating $\mathbf{W}_{\mathbf{k}}$ requires solving a sparse system, expensive; dealing with tall skinny $\mathbf{Z}_{\mathbf{k}}$ matrices is cheap.

Combining the ideas

Idea: store all the iterates $\mathbf{Z}_{\mathbf{k}}, \mathbf{W}_{\mathbf{k}}$ with permuted graph bases.
Need new inverse-free primitives: horizontal stacking (not obvious in this setting!) and column compression
At the end, using another new primitive we return $\mathbf{A}, \mathbf{E} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ (stored efficiently) such that $\mathbf{X}=\mathbf{A E}^{-1}$.

Stacking and column compression

Input: $\mathbf{A}_{1}, \mathbf{E}_{1}, \mathbf{A}_{\mathbf{2}}, \mathbf{E}_{\mathbf{2}}$ such that $\mathbf{Z}_{\mathrm{k}}=\mathbf{A}_{1} \mathbf{E}_{1}^{-1}, \mathbf{W}_{\mathrm{k}+1}=\mathbf{A}_{\mathbf{2}} \mathbf{E}_{2}^{-1}$

1. Set $\mathbf{E}_{3}=\left[\begin{array}{cc}\mathbf{E}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{E}_{2}\end{array}\right], \mathbf{A}_{\mathbf{3}}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{\mathbf{2}}\end{array}\right]$: now
$\tilde{Z}_{k+1}=\left[\mathbf{Z}_{\mathrm{k}} \mathbf{W}_{\mathrm{k}+1}\right]=\mathrm{A}_{3} \mathrm{E}_{3}^{-1}$
2. CS decomposition $\mathbf{E}_{3}=\mathbf{U S K}, \mathbf{A}_{\mathbf{3}}=$ VCK, \mathbf{S}, \mathbf{C} diagonal $\mathrm{s}_{\mathrm{ii}}^{2}+\mathbf{c}_{\mathrm{ii}}^{2}=\mathbf{1}$
U, V orthogonal. It's like an inverse-free SVD
3. \mathbf{K} and \mathbf{U} can be dropped, they simplify
4. columns \mathbf{i} with small ratio $\mathbf{c}_{\mathbf{i j}} / \mathrm{s}_{\mathbf{i i}}$ negligible in $\tilde{\mathbf{Z}}_{\mathrm{k}+1} \tilde{\mathbf{Z}}_{\mathrm{k}+1}^{\top}$, drop them

Error measures

According to applications, either an accurate \mathbf{X} or an accurate subspace $\mathcal{U}=$ span $\left[\begin{array}{l}I_{\mathrm{n}} \\ \mathbf{X}\end{array}\right]$ (or other error measures) are important.
ADI delivers a good \mathbf{X}, but when $\|\mathbf{X}\|$ is large, $\left[\begin{array}{l}\mathbf{I}_{\mathbf{n}} \\ \mathbf{X}\end{array}\right]$ is an ill-conditioned basis for its range.
Inverse-free arithmetic delivers (\mathbf{A}, \mathbf{E}) such that $\mathbf{X}=\mathbf{A E} \mathbf{E}^{-1}$, and $\left[\begin{array}{l}\mathbf{E} \\ \mathbf{A}\end{array}\right]$ is a well-conditioned basis for \mathcal{U}.

Example

$$
\mathbf{U}=\left[\begin{array}{l}
\mathbf{E} \\
\mathbf{A}
\end{array}\right]=\left[\begin{array}{cc}
\delta_{1} & 0 \\
0 & 1 \\
1 & 0 \\
\mathbf{0} & \delta_{2}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cc}
\delta_{1}^{-1} & 0 \\
0 & \delta_{2}
\end{array}\right], \quad \delta_{1}, \delta_{2} \ll 1
$$

X well-approximated by low-rank $\tilde{\mathrm{X}}=\left[\begin{array}{cc}\delta_{1}^{-1} & 0 \\ 0 & 0\end{array}\right]$, very sensitive to perturbations of $\boldsymbol{\delta}_{1}$ but info on \mathbf{u}_{2} and δ_{2} completely lost.
\mathbf{U} better representation for the subspace (but worse for \mathbf{X} !), equally sensitive to perturbations to δ_{1} and δ_{2}.

Example

Toy example random, symmetric, ill-conditioned sparse $\mathbf{F} \in \mathbb{R}^{400 \times 400}$, "hard" right-hand side ($\mathbf{G}=$ smallest eigs of \mathbf{F}, perturbed)

Conclusions

- Better subspaces out of ADI when using permuted graph bases and inverse-free arithmetic.
- Trade-off between rank of computed \mathbf{X} and subspace accuracy.
- Permuted graph/inverse-free machinery can find some use in many algorithms. Trouble with instabilities? Try it!
- Permuted graph basis Matlab code available on http://bitbucket . org/fph/pgdoubling.
- Preprint coming soon! Keep an eye on http://www.di.unipi.it/ \sim fpoloni/publications/publications.php.

