Permuted Graph Bases for Solving Large and Sparse Matrix Equations

Volker Mehrmann (TU Berlin, mehrmann@math.tu-berlin.de) and <u>Federico Poloni</u> (U Pisa, fpoloni@di.unipi.it)

Inverse-free representation

A matrix
$$M = AE^{-1}$$
 is uniquely determined by the subspace span $\begin{bmatrix} E \\ A \end{bmatrix}$
(not $\begin{bmatrix} E \\ A \end{bmatrix}$ itself! May transform $E \to EK$, $A \to AK$).

Plan: store and work on pair (E, A) rather than M. Most linear algebra operations ("primitives") can be done without inversions working on **(E, A)** [Benner, Byers 2006]: e.g., addition: $A_1E_1^{-1} + A_2E_2^{-1} = (A_1P + A_2Q)(E_1Q)^{-1},$ where **P**, **Q** chosen so that $\begin{bmatrix} \mathsf{P} \\ \mathsf{O} \end{bmatrix} = \ker \begin{bmatrix} -\mathsf{E}_2 \ \mathsf{E}_1 \end{bmatrix}$

Stacking and column compression

Input:
$$A_1$$
, E_1 , A_2 , E_2 such that $Z_k = A_1 E_1^{-1}$, $W_{k+1} = A_2 E_2^{-1}$
1. Set $E_3 = \begin{bmatrix} E_1 & 0 \\ 0 & E_2 \end{bmatrix}$, $A_3 = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$: now
 $\tilde{Z}_{k+1} = \begin{bmatrix} Z_k & W_{k+1} \end{bmatrix} = A_3 E_3^{-1}$
2. CS decomposition $E_3 = USK$, $A_3 = VCK$, S, C diagonal $s_{ii}^2 + c_{ii}^2 = \tilde{Z}_{ii}$
U, V orthogonal. It's like an inverse-free SVD
3. K and U can be dropped, they simplify
4. columns i with small ratio c_{ii}/s_{ii} negligible in $\tilde{Z}_{k+1}\tilde{Z}_{k+1}^T$, drop them

Advantage: more accurate when E_1 and/or E_2 almost singular

Q

Permuted graph bases

- Pair $(E, A) \leftrightarrow$ basis of the subspace $\leftrightarrow K$ above. How to choose it? Orthogonal bases: everyone likes them!
- Permuted graph bases: another possible choice. What are they?

Theorem [Knuth, 1986]

Every **m**-dim subspace of \mathbb{R}^n is spanned by a matrix $\tilde{\mathbf{U}} \in \mathbb{R}^{n \times m}$ that has I_m as a submatrix and all other entries ≤ 1 .

We can bound the condition number $\kappa_2(\tilde{U})$ for this basis, numerically "almost as good" as orthogonal bases.

Example

$$U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}, \text{ PG basis } \tilde{U} = \begin{bmatrix} 0 & 1 \\ 0.333 & 0.667 \\ 0.667 & 0.333 \\ 1 & 0 \end{bmatrix} \quad \begin{array}{l} \text{span } U = \text{span } \tilde{U} \\ \kappa_2(U) = 22.76 \\ \kappa_2(\tilde{U}) = 1.34 \end{array}$$

What's the advantage over orthogonal?

Error measures

According to applications, either an accurate **X** or an accurate subspace $\mathcal{U} = \operatorname{span} \begin{vmatrix} \mathbf{I_n} \\ \mathbf{X} \end{vmatrix}$ (or other error measures) are important. ADI delivers a good **X**, but when $||\mathbf{X}||$ is large, $\begin{bmatrix} \mathbf{I}_n \\ \mathbf{X} \end{bmatrix}$ is an ill-conditioned basis for its range.

Inverse-free arithmetic delivers (A, E) such that $X = AE^{-1}$, and $\begin{vmatrix} E \\ A \end{vmatrix}$ is

a well-conditioned basis for \mathcal{U} .

Example

$$\mathbf{U} = \begin{bmatrix} \mathbf{E} \\ \mathbf{A} \end{bmatrix} = \begin{bmatrix} \delta_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \delta_2 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \delta_1^{-1} & \mathbf{0} \\ \mathbf{0} & \delta_2 \end{bmatrix}, \quad \delta_1, \delta_2 \ll \mathbf{1}$$

$$\mathbf{X} \text{ well-approximated by low-rank } \tilde{\mathbf{X}} = \begin{bmatrix} \delta_1^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \text{ very sensitive to pertur-}$$

bations of δ_1 but info on \mathbf{u}_2 and δ_2 completely lost. **U** better representation for the subspace (but worse for **X**!), equally sensitive to perturbations to δ_1 and δ_2 .

- Sparser, stable representation of the subspace
- Some primitives much more efficient, e.g. $\mathbf{M} \rightarrow \mathbf{M}^{\mathsf{T}}$
- Easier to preserve some structures (Lagrangian/Hamiltonian/symplectic).

Lyapunov equations and ADI

We have already used permuted graph bases machinery for dense matrix equations [M., P. 2012]. Time to move to large sparse!

Lyapunov equation

 $\mathbf{F}^{\mathsf{T}}\mathbf{X} + \mathbf{X}\mathbf{F} + \mathbf{G}\mathbf{G}^{\mathsf{T}} = \mathbf{0}$ (LE)

 $F \in \mathbb{R}^{n \times n}$ large sparse, $G \in \mathbb{R}^{n \times m}$ tall skinny. Looking for solution $X = X^{T} \ge 0$; often in applications it's (approximately) low-rank

Main workhorse: Low Rank – ADI algorithm [Benner, Li, Penzl 2008]

LR-ADI algorithm

Store at each step k a low-rank factor Z_k of current solution guess X_k ; start from $Z_0 = |$

At each step, generate new component W_{k+1} using a rational-Krylov-like iteration and set $\tilde{Z}_{k+1} = [Z_k W_{k+1}]$ Compress \tilde{Z}_{k+1} to a thinner Z_{k+1} such that $\tilde{Z}_{k+1}\tilde{Z}_{k+1}^{\mathsf{T}} \approx Z_{k+1}Z_{k+1}^{\mathsf{T}}$

Example

Toy example random, symmetric, ill-conditioned sparse $\mathbf{F} \in \mathbb{R}^{400 \times 400}$. "hard" right-hand side ($\mathbf{G} =$ smallest eigs of \mathbf{F} , perturbed)

Conclusions

Typical setting: $n \gg m$; generating W_k requires solving a sparse system, expensive; dealing with tall skinny Z_k matrices is cheap.

Combining the ideas

Idea: store all the iterates Z_k , W_k with permuted graph bases. Need new inverse-free primitives: horizontal stacking (not obvious in this setting!) and column compression At the end, using another new primitive we return $A, E \in \mathbb{R}^{n \times n}$ (stored efficiently) such that $X = AE^{-1}$.

Better subspaces out of ADI when using permuted graph bases and inverse-free arithmetic.

- ► Trade-off between rank of computed **X** and subspace accuracy.
- Permuted graph/inverse-free machinery can find some use in many algorithms. Trouble with instabilities? Try it!
- Permuted graph basis Matlab code available on http://bitbucket .org/fph/pgdoubling.
- Preprint coming soon! Keep an eye on http://www.di.unipi.it/ ~fpoloni/publications/publications.php.