
Permuted Graph Bases for Solving
Large and Sparse Matrix Equations

Volker Mehrmann (TU Berlin, mehrmann@math.tu-berlin.de) and Federico Poloni (U Pisa, fpoloni@di.unipi.it)

Inverse-free representation

A matrix M = AE−1 is uniquely determined by the subspace span

[
E
A

]
(not

[
E
A

]
itself! May transform E→ EK, A→ AK).

Plan: store and work on pair (E,A) rather than M.
Most linear algebra operations (“primitives”) can be done without
inversions working on (E,A) [Benner, Byers 2006]: e.g., addition:

A1E
−1
1 + A2E

−1
2 = (A1P + A2Q)(E1Q)−1,

where P,Q chosen so that

[
P
Q

]
= ker

[
−E2 E1

]
Advantage: more accurate when E1 and/or E2 almost singular

Permuted graph bases

Pair (E,A)↔ basis of the subspace↔ K above. How to choose it?
I Orthogonal bases: everyone likes them!
I Permuted graph bases: another possible choice. What are they?

Theorem [Knuth, 1986]

Every m-dim subspace of Rn is spanned by a matrix Ũ ∈ Rn×m that has
Im as a submatrix and all other entries ≤ 1.

We can bound the condition number κ2(Ũ) for this basis, numerically
“almost as good” as orthogonal bases.

Example

U =

1 2
3 4
5 6
7 8

, PG basis Ũ =

0 1

0.333 0.667
0.667 0.333
1 0

 spanU = span Ũ
κ2(U) = 22.76

κ2(Ũ) = 1.34

What’s the advantage over orthogonal?
I Sparser, stable representation of the subspace
I Some primitives much more efficient, e.g. M→ MT

I Easier to preserve some structures (Lagrangian/Hamiltonian/symplectic).

Lyapunov equations and ADI

We have already used permuted graph bases machinery for dense matrix
equations [M., P. 2012]. Time to move to large sparse!

Lyapunov equation

FTX + XF + GGT = 0 (LE)

F ∈ Rn×n large sparse, G ∈ Rn×m tall skinny. Looking for solution
X = XT > 0; often in applications it’s (approximately) low-rank

Main workhorse: Low Rank – ADI algorithm [Benner, Li, Penzl 2008]
LR-ADI algorithm
I Store at each step k a low-rank factor Zk of current solution guess Xk;

start from Z0 =
[]

I At each step, generate new component Wk+1 using a
rational-Krylov-like iteration and set Z̃k+1 =

[
Zk Wk+1

]
I Compress Z̃k+1 to a thinner Zk+1 such that Z̃k+1Z̃T

k+1 ≈ Zk+1ZT
k+1

Typical setting: n� m; generating Wk requires solving a sparse
system, expensive; dealing with tall skinny Zk matrices is cheap.

Combining the ideas

Idea: store all the iterates Zk, Wk with permuted graph bases.
Need new inverse-free primitives: horizontal stacking (not obvious in this
setting!) and column compression
At the end, using another new primitive we return A,E ∈ Rn×n (stored
efficiently) such that X = AE−1.

Stacking and column compression

Input: A1,E1,A2,E2 such that Zk = A1E
−1
1 , Wk+1 = A2E

−1
2

1. Set E3 =

[
E1 0
0 E2

]
, A3 =

[
A1 A2

]
: now

Z̃k+1 =
[
Zk Wk+1

]
= A3E

−1
3

2. CS decomposition E3 = USK, A3 = VCK, S,C diagonal s2ii + c2ii = 1
U,V orthogonal. It’s like an inverse-free SVD

3.K and U can be dropped, they simplify

4. columns i with small ratio cii/sii negligible in Z̃k+1Z̃T
k+1, drop them

Error measures

According to applications, either an accurate X or an accurate subspace

U = span

[
In
X

]
(or other error measures) are important.

ADI delivers a good X, but when ‖X‖ is large,

[
In
X

]
is an ill-conditioned

basis for its range.

Inverse-free arithmetic delivers (A,E) such that X = AE−1, and

[
E
A

]
is

a well-conditioned basis for U .
Example

U =

[
E
A

]
=

δ1 0
0 1
1 0
0 δ2

 , X =

[
δ−11 0
0 δ2

]
, δ1, δ2� 1

X well-approximated by low-rank X̃ =

[
δ−11 0
0 0

]
, very sensitive to pertur-

bations of δ1 but info on u2 and δ2 completely lost.
U better representation for the subspace (but worse for X!), equally sensi-
tive to perturbations to δ1 and δ2.

Example

Toy example random, symmetric, ill-conditioned sparse F ∈ R400×400,
“hard” right-hand side (G = smallest eigs of F, perturbed)

0 10 20 30 40

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

residuals vs. step k

ADI, norm residual ADI, subspace residual
PG-ADI, norm residual PG-ADI, subspace residual

0 10 20 30 40
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

columns of Zk vs. step k

Conclusions

I Better subspaces out of ADI when using permuted graph bases and
inverse-free arithmetic.

I Trade-off between rank of computed X and subspace accuracy.
I Permuted graph/inverse-free machinery can find some use in many

algorithms. Trouble with instabilities? Try it!
I Permuted graph basis Matlab code available on http://bitbucket

.org/fph/pgdoubling.
I Preprint coming soon! Keep an eye on http://www.di.unipi.it/

~fpoloni/publications/publications.php.

http://bitbucket
.org/fph/pgdoubling
http://www.di.unipi.it/~fpoloni/publications/publications.php
http://www.di.unipi.it/~fpoloni/publications/publications.php

