Permuted graph bases for structured subspaces and pencils

Volker Mehrmann ${ }^{1}$ Federico Poloni ${ }^{2}$

${ }^{1}$ Technische U Berlin, Inst of Mathematics
${ }^{2}$ U Pisa, Italy, Dept of Computer Science
4th IMA Conference on Numerical Linear Algebra and Optimisation September 2014

Subspaces, bases and graph bases

Definition

U, V tall thin matrices with full column rank.
$U \sim V$ if $U=V B$ for a square invertible $B \Longleftrightarrow$ same column space.

Each V with $U \sim V$ can be used to work with the subspace im U.

- If $U=Q R$ (tall skinny $Q R$), $U \sim Q$.
- If $U=\left[\begin{array}{l}B \\ N\end{array}\right]$, with B square invertible, $U \sim\left[\begin{array}{c}I \\ N B^{-1}\end{array}\right]$ graph basis.
$B^{-1} \rightarrow$ danger: can be ill-conditioned.

Permuted graph bases

- If B is any square invertible submatrix of U, we can post-multiply by B^{-1} to enforce an identity in a subset of rows.

Example

$$
U=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
1 & 1 & 2 \\
3 & 5 & 8
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 0 & 1
\end{array}\right]
$$

We can write this as $U \sim P\left[\begin{array}{l}1 \\ x\end{array}\right], P$ permutation matrix.
III-conditioning - how bad can it be?
Theorem [Knuth, '84 or earlier]
Each full-column-rank U has a permuted graph basis $P\left[\begin{array}{c}1 \\ x\end{array}\right]$ with $\left|x_{i j}\right| \leq 1$

How to compute them?

The theory Choose submatrix B with maximal $|\operatorname{det} B|$. Cramer's rule on

$$
[\text { row of } X]=[\text { row of } U] B^{-1} \quad \text { gives } \quad x_{i j}=\frac{\operatorname{det}(\text { other submatrix })}{\operatorname{det} B} .
$$

Related to rank-revealing factorizations, algebraic geometry but NP-hard!
The practice Find $\left|x_{i j}\right|>1$, update basis simplex-algorithm-style

$$
\left[\begin{array}{ccc}
\left.\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 0 & 1
\end{array}\right] \text { this row out }
\end{array}\right] \text { this row in }
$$

Relax to $\left|x_{i j}\right| \leq \tau$ with $\tau>1$ for better convergence.

Gains and losses

Condition number $\kappa(V)=\frac{\sigma_{\max }(V)}{\sigma_{\min }(V)}$ determines column space sensitivity.

Theorem

If $\left|x_{i j}\right| \leq \tau$, then $\kappa\left(P\left[\begin{array}{l}1 \\ x\end{array}\right]\right) \leq \sqrt{m n \tau^{2}+1}$
With respect to an orthogonal basis, we lose conditioning (but not too much!), but we gain an identity submatrix. What use is it?

Several applications in optimization:

- Approximate $\max (f)$ on a large grid, cross-tensor approximation. [Oseledets, Savostyanov, Tyrtishnikov et al, '10]
- Minimize function of a subspace (Grassmann manifold) $f(U)$. [Markovsky, Usevich '14]
- Precondition large-scale least-squares via "basis variables". [Arioli, Duff '14]

A structured version

Image of $U \in \mathbb{C}^{2 n \times n}$ Lagrangian if $U^{H} J_{2 n} U=0$, with $J_{2 n}=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$.
Graph matrix $U=\left[\begin{array}{c}1 \\ x\end{array}\right]$ Lagrangian $\Longleftrightarrow x$ Hermitian.
Not true for $P\left[\begin{array}{l}I \\ X\end{array}\right]$ though: we must change the concept of permutation.
Symplectic swaps
Vector transformations generated by J_{2} on $\left(x_{k}, x_{n+k}\right)$ for each k :

$$
\left[\begin{array}{lllll}
x_{1} & \cdots & -x_{n+k} & \cdots & \left.x_{n} \left\lvert\, \begin{array}{lllll}
x_{n+1} & \cdots & x_{k} & \cdots & x_{2 n}
\end{array}\right.\right] . ~ . ~
\end{array}\right.
$$

Lagrangian permuted graph bases

Theorem [Mehrmann, P. '12]
If im U Lagrangian, then there exists Lagrangian permuted graph basis $U \sim S\left[\begin{array}{l}1 \\ x\end{array}\right]$ with S symplectic swap, $X=X^{H}$ and $\left|x_{i j}\right| \leq \sqrt{2}$.

Similar but not trivial, structure and allowed transformations must match.
Example

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 / 2 & -5 / 6 & 1 / 6 \\
-1 / 2 & -1 / 2 & 1 / 2 \\
-1 / 2 & -1 / 6 & 5 / 6 \\
0 & 0 & 1
\end{array}\right] .
$$

Allows us to store and operate on exactly Lagrangian subspace stably.

Results for pencils

Definitions: matrix pencil: degree-1 matrix polynomial $L(x)=L_{1} x+L_{0}$. Assume here regular, i.e., $\operatorname{det} L(x) \not \equiv 0$.

Eigenvalue, eigenvector of a pencil: $L(\lambda) v=0$. Unchanged if I premultiply:
Definition

$$
L(x) \sim M(x) \text { if } L_{1}=B M_{1}, L_{0}=B M_{0} \text { for } B \text { square invertible. }
$$

Note that

$$
L(x) \sim M(x) \Longleftrightarrow\left[\begin{array}{ll}
L_{1} & L_{0}
\end{array}\right]^{H} \sim\left[\begin{array}{ll}
M_{1} & M_{0}
\end{array}\right]^{H} .
$$

So one can use results on subspaces to normalize pencils

Example

$$
L(x) \sim\left[\begin{array}{lll}
1 & * & 0 \\
0 & * & 1 \\
0 & * & 0
\end{array}\right] x+\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* * & * & 1
\end{array}\right], \quad|*| \leq 1 .
$$

Results for structured pencils

Symplectic pencils: $L(x) \in \mathbb{C}[x]^{2 n \times 2 n}$ such that $L_{1} J_{2 n} L_{1}^{H}=L_{0} J_{2 n} L_{0}^{H}$.
$\left[\begin{array}{ll}L_{1} & L_{0}\end{array}\right]^{H}$ essentially Lagrangian (after some row/sign changes)

$$
\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * \\
0 & 0 & * \\
0 & 0 & * & *
\end{array}\right] x+\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & 0 & 0 \\
* & * & 1 & 0 \\
* & * & 0 & 1
\end{array}\right]
$$

- Among each two same-color columns, one is a column of $I_{2 n}$
- The other entries satisfy $|*| \leq \sqrt{2}$, and can be pieced together (modulo signs) into a Hermitian matrix

Hamiltonian pencils: $L(x) \in \mathbb{C}[x]^{2 n \times 2 n}$ such that $L_{1} J_{2 n} L_{0}^{H}=-L_{0} J_{2 n} L_{1}^{H}$.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] x+\left[\begin{array}{lll}
* & * & * \\
* & * \\
* & * \\
* & * \\
* & * & *
\end{array}\right]
$$

Linear-quadratic optimal control

Common control-theory problem: compute stable (eigenvalues with $\operatorname{Re} \lambda<0)$ invariant subspace of

$$
\left[\begin{array}{ccc}
0 & I_{n} & 0 \\
-I_{n} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] x-\left[\begin{array}{ccc}
0 & A & B \\
A^{T} & Q & S \\
B^{T} & S^{T} & R
\end{array}\right]
$$

Traditional solution (recast in our language): first enforce identity

$$
\left[\begin{array}{ccc}
I_{n} & 0 & 0 \\
0 & I_{n} & 0 \\
0 & 0 & 0
\end{array}\right] x-\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & I_{m}
\end{array}\right] ;
$$

Now it's block triangular; deflate and work on block 2×2 pencil in orange.

The orange pencil is Hamiltonian, better to preserve structure.

A different deflation

Why must the identity go there?

$$
\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & 0
\end{array}\right] x-\left[\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & I_{m}
\end{array}\right]
$$

Put columns of I in half of the green and blue columns. The deflated top block- 2×2 pencil is Hamiltonian (in the format of our previous slide).

Example

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] x-\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & \varepsilon
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & -1 & 0
\end{array}\right] x+\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The deflation process is well-conditioned no matter how small ε is. (unlike many other algorithms.)

Invariant subspaces of Hamiltonians

Problem: compute stable $(\operatorname{Re} \lambda<0)$ inv. subspace of a Hamiltonian pencil (\Longleftrightarrow solve a Riccati equation, if subspace U in graph basis)

Algorithm: a "pencil variant" of the matrix sign function iteration $A \mapsto \frac{1}{2}\left(A+A^{-1}\right)$

Two things needed at each step:

- Compute left kernel of $\left[\begin{array}{l}L_{1} \\ L_{0}\end{array}\right]$: use permuted graph bases:

$$
\left[\begin{array}{ll}
-X & I
\end{array}\right] P^{-1} P\left[\begin{array}{l}
I \\
X
\end{array}\right]=0
$$

- Normalize Hamiltonian pencil $L_{1} x+L_{0}$ keeping structure: use Lagrangian permuted graph bases (i.e., of $\left[L_{1} L_{0}\right]^{H}$).

Inverse-free sign method (with permuted graph bases)

Algorithm [Mehrmann, P. '12 and '13]

Input: $L_{1} x+L_{0}$ Hamiltonian;
(1) compute $\left[-M_{0} M_{1}\right]$ left kernel of $\left[\begin{array}{c}L_{1} \\ L_{0}\end{array}\right]$;
(2) replace $L(x)$ with $M_{0} L_{1} x+\frac{1}{2}\left(M_{1} L_{1}+M_{0} L_{0}\right)$;
(3) compute Lagrangian permuted representation of $L(x)$;
(9) repeat 1-3 until convergence;
(6) find kernel of $L_{1}+L_{0}$;

How well does it go in practice? On a known set of benchmark problems (CAREX, [Benner et al, '95, Chu et al '07]), first algorithm to get perfect results on both:

- subspace residual down to machine precision;
- Lagrangian Structure preserved (exactly or up to machine precision).

Figure : Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]

Figure : Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]

Large scale AREs

This was for small-case dense problems; what about large, sparse control?

- Often, the invariant subspace can be represented cheaply as $U \sim\left[\begin{array}{c}l \\ Z Z^{T}\end{array}\right]$, with Z tall skinny.
- Orthogonal basis not pursued, difficult to use this low-rank property.

A first attempt to use these ideas:
(1) Run a standard solution algorithm (ADI) keeping not Z but (up to \sim) such that $Z=N B^{-1}$;
(2) using the kernel trick $[-X I] P^{-1} P\left[\begin{array}{l}1 \\ x\end{array}\right]=0$, build stable low-rank representation $U \sim\left[\begin{array}{c}I-V_{1} V_{2}^{T} \\ V_{3} V_{4}^{T^{2}}\end{array}\right]$, all the V_{i} tall skinny.
How does it work? Beneficial in some ill-conditioned cases, large $\|Z\|$.

An experiment

Figure : Comparison of ADI and PG-ADI, random matrix and RHS

Large scale AREs

Theorem [Mehrmann, P. preprint]

Given orthogonal $\left[\begin{array}{l}B \\ N\end{array}\right]$ such that $Z=N B^{-1} \in \mathbb{C}^{n \times m}$, we can build (quickly and stably) tall skinny V_{i} such that and

$$
\left[\begin{array}{c}
1 \\
Z Z^{T}
\end{array}\right] \sim V=\left[\begin{array}{c}
I-V_{1} V_{2}^{T} \\
V_{3} V_{4}^{T}
\end{array}\right], \quad \kappa(V) \leq \frac{\sqrt{3}}{\sqrt{2}}\left(m n \tau^{2}+n \tau\right) .
$$

Conclusions

Small dense case

- Works great!

Large-scale case still preliminary work; interesting messages:

- We can use permuted graph bases also in sparse problems.
- The kernel trick $[-x \quad 1] P^{-1} P\left[\begin{array}{l}1 \\ x\end{array}\right]=0$ seems even more useful in the tall skinny case.
- Another reflection: for each Hamiltonian H, there is S such that for $S^{-1} H S$ the invariant subspace problem "in Riccati form" $U=\left[\begin{array}{c}1 \\ x\end{array}\right]$ is well-conditioned.
How to exploit this? Can we run permuted graph Newton?
And, finally:
- Bases with identities are underrated. They work well if you keep flexible on the position of the I submatrix. Try them!

Conclusions

Small dense case

- Works great!

Large-scale case still preliminary work; interesting messages:

- We can use permuted graph bases also in sparse problems.
- The kernel trick $[-x \quad 1] P^{-1} P\left[\begin{array}{l}l \\ x\end{array}\right]=0$ seems even more useful in the tall skinny case.
- Another reflection: for each Hamiltonian H, there is S such that for $S^{-1} H S$ the invariant subspace problem "in Riccati form" $U=\left[\begin{array}{l}1 \\ x\end{array}\right]$ is well-conditioned.
How to exploit this? Can we run permuted graph Newton?
And, finally:
- Bases with identities are underrated. They work well if you keep flexible on the position of the I submatrix. Try them!

Thanks for your attention!

