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Subspaces, bases and graph bases

Definition
U, V tall thin matrices with full column rank.
U ~ V if U= VB for a square invertible B <= same column space.

Each V with U ~ V can be used to work with the subspace im U.
e If U= QR (tall skinny QR), U ~ Q.

B . : . / .
o If U= [N] with B square invertible, U ~ [NB*] graph basis.

B~! — danger: can be ill-conditioned.
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Permuted graph bases

o If B is any square invertible submatrix of U, we can post-multiply by
B~ to enforce an identity in a subset of rows.

Example
1 2 3 1 0 O
4 5 6 05 05 0
U=1|7 8 9|~ |0 1 0
11 2 0 0 1
3 5 8 2 0 1

We can write this as U ~ P [} ], P permutation matrix.
[ll-conditioning — how bad can it be?

Theorem [Knuth, "84 or earlier]
Each full-column-rank U has a permuted graph basis P [)’<] with [x;] <1 }
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How to compute them?
The theory Choose submatrix B with maximal |det B|. Cramer’s rule on

[row of X] = {row of U} B~! gives Xjj = det (othzre:uBbmatrlx)

Related to rank-revealing factorizations, algebraic geometry but NP-hard!

The practice Find |x;| > 1, update basis simplex-algorithm-style

1 0 O0pgg— this row out
05 05 0

0 1 0

0 0 1
7 this row in

Relax to |x;j| < 7 with 7 > 1 for better convergence.
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Gains and losses

Condition number x(V) = Z’"L((\‘;)) determines column space sensitivity.

Theorem

If |x;| < 7, then n(P[)Q])g mnt2 +1 }

With respect to an orthogonal basis, we lose conditioning (but not too
much!), but we gain an identity submatrix. What use is it?

Several applications in optimization:

e Approximate max(f) on a large grid, cross-tensor approximation.
[Oseledets, Savostyanov, Tyrtishnikov et al, "10]

@ Minimize function of a subspace (Grassmann manifold) f(U).
[Markovsky, Usevich '14]

@ Precondition large-scale least-squares via “basis variables™.
[Arioli, Duff '14]
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A structured version

Image of U € C2"*" Lagrangian if U" b, U = 0, with b, =

Graph matrix U = l)q Lagrangian <= X Hermitian.

Not true for P LQ] though: we must change the concept of permutation.

Symplectic swaps

Vector transformations generated by J, on (xk, xn1x) for each k:

[Xl ... _Xn+k ... Xn|Xn+1 DR Xk .. in}'
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Lagrangian permuted graph bases

Theorem [Mehrmann, P. '12]

If im U Lagrangian, then there exists Lagrangian permuted graph basis
U~ S[)] with S symplectic swap, X = X" and |x;| < v/2.

Similar but not trivial, structure and allowed transformations must match.

Example
1 0 0] [ 1 0 0]
010 0 1 0
0 01 —1/2 —5/6 /s
1 2 3|7 |=12 —12 1
2 45 —1/2 —1/6 5/6
356 [0 0 1]

Allows us to store and operate on exactly Lagrangian subspace stably.
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Results for pencils

Definitions: matrix pencil: degree-1 matrix polynomial L(x) = Lix + Lo.
Assume here regular, i.e., det L(x) #Z 0.

Eigenvalue, eigenvector of a pencil: L(A)v = 0. Unchanged if | premultiply:
Definition

L(x) ~ M(x) if Ly = BM;,Ly= BMy for B square invertible.

Note that
H H
Lix)~ M(x) <= |Li Lo| ~[M Mo| .

So one can use results on subspaces to normalize pencils

Example

s = [ [ E] st
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Results for structured pencils

Symplectic pencils: L(x) € C[x]2"*2" such that Ly, L} = Loo,LY.

H
{Ll Lo] essentially Lagrangian (after some row/sign changes)

@ Among each two same-color columns, one is a column of b,

@ The other entries satisfy |*| < v/2, and can be pieced together
(modulo signs) into a Hermitian matrix

Hamiltonian pencils: L(x) € C[x]?"*2" such that Ly, L = —LoJo,L}.

Birmingham '14 9 /19
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Linear-quadratic optimal control

Common control-theory problem: compute stable (eigenvalues with
Re A < 0) invariant subspace of

0 I, 0 0 A B
—, 0 0O|lx—|AT @ S
0 00 BT ST R

Traditional solution (recast in our language): first enforce identity

I, 00 0
0 [/, O x— 0];
0 0 Im

Now it's block triangular; deflate and work on block-2 x 2 pencil in
orange.

The orange pencil is Hamiltonian, better to preserve structure.
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A different deflation

Why must the identity go there?

+ % 0 # 0
x* % 0] x— * 0
+ % 0 x Ay

Put columns of [ in half of the green and blue columns. The deflated top
block-2 x 2 pencil is Hamiltonian (in the format of our previous slide).

Example
0 10 0 01 1 0 O 0 0O
-1 0 0|x—1|0 0 0|~ |0 & O|x+ |1 0 O
0 00 1 0 ¢ 0 -1 0 0 01

The deflation process is well-conditioned no matter how small ¢ is.
(unlike many other algorithms.)
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Invariant subspaces of Hamiltonians

Problem: compute stable (Re A < 0) inv. subspace of a Hamiltonian pencil

( <= solve a Riccati equation, if subspace U in graph basis)

Algorithm: a “pencil variant” of the matrix sign function iteration
A LA+ AL

Two things needed at each step:

@ Compute left kernel of [tﬂ use permuted graph bases:

-x 1] PP L’(] —0.

@ Normalize Hamiltonian pencil Lix + Ly keeping structure: use
Lagrangian permuted graph bases (i.e., of [ L1 Lo]H).
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Inverse-free sign method (with permuted graph bases)

Algorithm [Mehrmann, P. '12 and '13]
Input: Lix + Lo Hamiltonian;
© compute [ Mo M ] left kernel of [E)]
@ replace L(x) with MoLix + 3(MiL1 + MoLo);
© compute Lagrangian permuted representation of L(x);

@ repeat 1-3 until convergence;
© find kernel of L1 + Lo;

How well does it go in practice? On a known set of benchmark problems
(CAREX, [Benner et al, '95, Chu et al '07]), first algorithm to get perfect
results on both:

@ subspace residual down to machine precision;

e Lagrangian Structure preserved (exactly or up to machine precision).

F. Poloni (U Pisa) Permuted Graph bases Birmingham '14 13 /19



Figure : Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]
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Figure : Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]
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Large scale AREs
This was for small-case dense problems; what about large, sparse control?
@ Often, the invariant subspace can be represented cheaply as
/ . .
U~ lZZT]' with Z tall skinny.
@ Orthogonal basis not pursued, difficult to use this low-rank property.

A first attempt to use these ideas:

@ Run a standard solution algorithm (ADI) keeping not Z but [/ﬂ

(up to ~) such that Z = NB~1;
@ using the kernel trick [-x 1] P~1P [ /] =0, build stable low-rank
I — vV,
ViV,

How does it work? Beneficial in some ill-conditioned cases, large ||Z]].

representation U ~ l ] all the V; tall skinny.
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An experiment

Figure : Comparison of ADI and PG-ADI, random matrix and RHS
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Large scale AREs

Theorem [Mehrmann, P. preprint]

Given orthogonal [B] such that Z= NB~! € C™™, we can build (quickly
and stably) tall skinny V; such that and

I IEAZ V3,
[ZZT] ~ V_[ VsV ], k(V) < ﬁ(mnT + nT).
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Conclusions
Small dense case

@ Works great!

Large-scale case still preliminary work; interesting messages:
@ We can use permuted graph bases also in sparse problems.

o The kernel trick [-x 1] P71P [ )] = 0 seems even more useful in the
tall skinny case.
@ Another reflection: for each Hamiltonian H, there is S such that for

S~LHS the invariant subspace problem “in Riccati form” U = [)’<] is
well-conditioned.

How to exploit this? Can we run permuted graph Newton?
And, finally:

@ Bases with identities are underrated. They work well if you keep
flexible on the position of the / submatrix. Try them!
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@ Bases with identities are underrated. They work well if you keep
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Thanks for your attention! J
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