Permuted graph bases for structured subspaces and pencils

Volker Mehrmann¹ Federico Poloni²

¹Technische U Berlin, Inst of Mathematics ²U Pisa, Italy, Dept of Computer Science

4th IMA Conference on Numerical Linear Algebra and Optimisation September 2014

Subspaces, bases and graph bases

Definition

U, V tall thin matrices with full column rank.

 $U \sim V$ if U = VB for a square invertible $B \iff$ same column space.

Each V with $U \sim V$ can be used to work with the subspace im U.

Permuted graph bases

• If B is any square invertible submatrix of U, we can post-multiply by B^{-1} to enforce an identity in a subset of rows.

Example

$$\mathcal{J} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 1 & 2 \\ 3 & 5 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

We can write this as $U \sim P\begin{bmatrix} I \\ X \end{bmatrix}$, P permutation matrix.

Ill-conditioning — how bad can it be?

Theorem [Knuth, '84 or earlier]

Each full-column-rank U has a permuted graph basis $P\begin{bmatrix} I\\ X\end{bmatrix}$ with $|x_{ij}| \leq 1$

How to compute them?

The theory Choose submatrix B with maximal $|\det B|$. Cramer's rule on

$$\begin{bmatrix} \mathsf{row} \text{ of } X \end{bmatrix} = \begin{bmatrix} \mathsf{row} \text{ of } U \end{bmatrix} B^{-1} \text{ gives } x_{ij} = rac{\mathsf{det}(\mathsf{other submatrix})}{\mathsf{det} B}.$$

Related to rank-revealing factorizations, algebraic geometry but NP-hard! The practice Find $|\mathbf{x}_{ij}| > 1$, update basis simplex-algorithm–style

Relax to $|x_{ij}| \leq \tau$ with $\tau > 1$ for better convergence.

Gains and losses

Condition number $\kappa(V) = \frac{\sigma_{\max}(V)}{\sigma_{\min}(V)}$ determines column space sensitivity.

Theorem

If
$$|x_{ij}| \leq \tau$$
, then $\kappa(P\left[\begin{smallmatrix} I \\ X \end{smallmatrix}
ight]) \leq \sqrt{mn\tau^2 + 1}$

With respect to an orthogonal basis, we lose conditioning (but not too much!), but we gain an identity submatrix. What use is it?

Several applications in optimization:

- Approximate max(f) on a large grid, cross-tensor approximation. [Oseledets, Savostyanov, Tyrtishnikov et al, '10]
- Minimize function of a subspace (Grassmann manifold) f(U). [Markovsky, Usevich '14]
- Precondition large-scale least-squares via "basis variables". [Arioli, Duff '14]

A structured version

Image of $U \in \mathbb{C}^{2n \times n}$ Lagrangian if $U^H J_{2n} U = 0$, with $J_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$. Graph matrix $U = \begin{bmatrix} I \\ X \end{bmatrix}$ Lagrangian $\iff X$ Hermitian.

Not true for $P\begin{bmatrix}I\\X\end{bmatrix}$ though: we must change the concept of permutation.

Symplectic swaps

Vector transformations generated by J_2 on (x_k, x_{n+k}) for each k:

$$\begin{bmatrix} x_1 & \cdots & -x_{n+k} & \cdots & x_n \mid x_{n+1} & \cdots & x_k & \cdots & x_{2n} \end{bmatrix}.$$

Lagrangian permuted graph bases

Theorem [Mehrmann, P. '12]

If im U Lagrangian, then there exists Lagrangian permuted graph basis $U \sim S \begin{bmatrix} I \\ X \end{bmatrix}$ with S symplectic swap, $X = X^H$ and $|x_{ij}| \le \sqrt{2}$.

Similar but not trivial, structure and allowed transformations must match.

Example								
	$\begin{bmatrix} 1\\0\\0\\1\\2 \end{bmatrix}$	0 1 0 2	0 0 1 3	~	$\begin{bmatrix} 1 \\ 0 \\ -1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$	0 1 -5/6 -1/2 1/c	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{6} \\ \frac{1}{2} \\ 5/c \end{array} $	
		5	6		$\begin{bmatrix} -1/2 \\ 0 \end{bmatrix}$	0	1	

Allows us to store and operate on exactly Lagrangian subspace stably.

Results for pencils

Definitions: matrix pencil: degree-1 matrix polynomial $L(x) = L_1 x + L_0$. Assume here regular, i.e., det $L(x) \neq 0$.

Eigenvalue, eigenvector of a pencil: $L(\lambda)v = 0$. Unchanged if I premultiply:

Definition

$$L(x) \sim M(x)$$
 if $L_1 = BM_1, L_0 = BM_0$ for B square invertible.

Note that

$$L(x) \sim M(x) \iff \begin{bmatrix} L_1 & L_0 \end{bmatrix}^H \sim \begin{bmatrix} M_1 & M_0 \end{bmatrix}^H.$$

So one can use results on subspaces to normalize pencils

Example

$$L(x) \sim \begin{bmatrix} 1 * 0 \\ 0 * 1 \\ 0 * 0 \end{bmatrix} x + \begin{bmatrix} * * 0 \\ * * 0 \\ * * 1 \end{bmatrix}, \quad |*| \le 1.$$

Results for structured pencils

Symplectic pencils: $L(x) \in \mathbb{C}[x]^{2n \times 2n}$ such that $L_1 J_{2n} L_1^H = L_0 J_{2n} L_0^H$. $\begin{bmatrix} L_1 & L_0 \end{bmatrix}^H$ essentially Lagrangian (after some row/sign changes)

$$\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix} x + \begin{bmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ * & * & 1 & 0 \\ * & * & 0 & 1 \end{bmatrix}$$

- Among each two same-color columns, one is a column of I_{2n}
- The other entries satisfy $|*| \le \sqrt{2}$, and can be pieced together (modulo signs) into a Hermitian matrix

Hamiltonian pencils: $L(x) \in \mathbb{C}[x]^{2n \times 2n}$ such that $L_1 J_{2n} L_0^H = -L_0 J_{2n} L_1^H$.

Linear-quadratic optimal control

Common control-theory problem: compute stable (eigenvalues with $\operatorname{Re} \lambda < 0$) invariant subspace of

$$\begin{bmatrix} 0 & I_n & 0 \\ -I_n & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times - \begin{bmatrix} 0 & A & B \\ A^T & Q & S \\ B^T & S^T & R \end{bmatrix}$$

Traditional solution (recast in our language): first enforce identity

$$\begin{bmatrix} I_n & 0 & 0 \\ 0 & I_n & 0 \\ 0 & 0 & 0 \end{bmatrix} x - \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ * & * & I_m \end{bmatrix};$$

Now it's block triangular; deflate and work on block-2 \times 2 pencil in orange.

The orange pencil is Hamiltonian, better to preserve structure.

A different deflation

Why must the identity go there?

$$\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ * & * & 0 \end{bmatrix} x - \begin{bmatrix} * & * & 0 \\ * & * & 0 \\ * & * & I_m \end{bmatrix}$$

Put columns of *I* in half of the green and blue columns. The deflated top block- 2×2 pencil is Hamiltonian (in the format of our previous slide).

Example

$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x - \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & \varepsilon \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The deflation process is well-conditioned no matter how small ε is. (unlike many other algorithms.)

F. Poloni (U Pisa)

Invariant subspaces of Hamiltonians

Problem: compute stable (Re $\lambda < 0$) inv. subspace of a Hamiltonian pencil (\iff solve a Riccati equation, if subspace U in graph basis)

Algorithm: a "pencil variant" of the matrix sign function iteration $A\mapsto \frac{1}{2}(A+A^{-1})$

Two things needed at each step:

• Compute left kernel of $\begin{bmatrix} L_1 \\ L_0 \end{bmatrix}$: use permuted graph bases:

$$\begin{bmatrix} -X & I \end{bmatrix} P^{-1} P \begin{bmatrix} I \\ X \end{bmatrix} = 0.$$

• Normalize Hamiltonian pencil $L_1 x + L_0$ keeping structure: use Lagrangian permuted graph bases (i.e., of $\begin{bmatrix} L_1 & L_0 \end{bmatrix}^H$).

Inverse-free sign method (with permuted graph bases)

Algorithm [Mehrmann, P. '12 and '13]

Input: $L_1x + L_0$ Hamiltonian;

- compute $\begin{bmatrix} -M_0 & M_1 \end{bmatrix}$ left kernel of $\begin{bmatrix} L_1 \\ L_0 \end{bmatrix}$;
- 2 replace L(x) with $M_0L_1x + \frac{1}{2}(M_1L_1 + M_0L_0)$;
- **③** compute Lagrangian permuted representation of L(x);
- repeat 1–3 until convergence;
- find kernel of $L_1 + L_0$;

How well does it go in practice? On a known set of benchmark problems (CAREX, [Benner et al, '95, Chu et al '07]), first algorithm to get perfect results on both:

- subspace residual down to machine precision;
- Lagrangian Structure preserved (exactly or up to machine precision).

Figure : Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]

Figure : Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]

Large scale AREs

This was for small-case dense problems; what about large, sparse control?

- Often, the invariant subspace can be represented cheaply as $U \sim \begin{bmatrix} I \\ ZZ^T \end{bmatrix}$, with Z tall skinny.
- Orthogonal basis not pursued, difficult to use this low-rank property.
- A first attempt to use these ideas:
 - Run a standard solution algorithm (ADI) keeping not Z but $\begin{vmatrix} B \\ N \end{vmatrix}$

(up to
$$\sim$$
) such that $Z=NB^{-1}$

② using the kernel trick $\begin{bmatrix} -X & I \end{bmatrix} P^{-1}P \begin{bmatrix} I \\ X \end{bmatrix} = 0$, build stable low-rank representation $U \sim \begin{bmatrix} I - V_1 V_2^T \\ V_3 V_4^T \end{bmatrix}$, all the V_i tall skinny.

How does it work? Beneficial in some ill-conditioned cases, large ||Z||.

An experiment

Figure : Comparison of ADI and PG-ADI, random matrix and RHS

F. Poloni (U Pisa)

Theorem [Mehrmann, P. preprint]

Given orthogonal $\begin{bmatrix} B \\ N \end{bmatrix}$ such that $Z = NB^{-1} \in \mathbb{C}^{n \times m}$, we can build (quickly and stably) tall skinny V_i such that and

$$\begin{bmatrix} I \\ ZZ^{T} \end{bmatrix} \sim V = \begin{bmatrix} I - V_1 V_2^{T} \\ V_3 V_4^{T} \end{bmatrix}, \quad \kappa(V) \leq \frac{\sqrt{3}}{\sqrt{2}} (mn\tau^2 + n\tau).$$

Conclusions

Small dense case

• Works great!

Large-scale case still preliminary work; interesting messages:

- We can use permuted graph bases also in sparse problems.
- The kernel trick $\begin{bmatrix} -X & I \end{bmatrix} P^{-1} P \begin{bmatrix} I \\ X \end{bmatrix} = 0$ seems even more useful in the tall skinny case.
- Another reflection: for each Hamiltonian H, there is S such that for $S^{-1}HS$ the invariant subspace problem "in Riccati form" $U = \begin{bmatrix} I \\ X \end{bmatrix}$ is well-conditioned.

How to exploit this? Can we run permuted graph Newton?

And, finally:

• Bases with identities are underrated. They work well if you keep flexible on the position of the *I* submatrix. Try them!

Conclusions

Small dense case

• Works great!

Large-scale case still preliminary work; interesting messages:

- We can use permuted graph bases also in sparse problems.
- The kernel trick $\begin{bmatrix} -X & I \end{bmatrix} P^{-1} P \begin{bmatrix} I \\ X \end{bmatrix} = 0$ seems even more useful in the tall skinny case.
- Another reflection: for each Hamiltonian H, there is S such that for $S^{-1}HS$ the invariant subspace problem "in Riccati form" $U = \begin{bmatrix} I \\ X \end{bmatrix}$ is well-conditioned.

How to exploit this? Can we run permuted graph Newton?

And, finally:

• Bases with identities are underrated. They work well if you keep flexible on the position of the *I* submatrix. Try them!

Thanks for your attention!