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Subspaces, bases and graph bases

Definition
U,V tall thin matrices with full column rank.
U ∼ V if U = VB for a square invertible B ⇐⇒ same column space.

Each V with U ∼ V can be used to work with the subspace imU.
If U = QR (tall skinny QR), U ∼ Q.

If U =

[
B
N

]
, with B square invertible, U ∼

[
I

NB−1

]
graph basis.

B−1 → danger: can be ill-conditioned.
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Permuted graph bases

If B is any square invertible submatrix of U, we can post-multiply by
B−1 to enforce an identity in a subset of rows.

Example

U =


1 2 3
4 5 6
7 8 9
1 1 2
3 5 8

 ∼

1 0 0
0.5 0.5 0
0 1 0
0 0 1
2 0 1


We can write this as U ∼ P

[ I
X
]
, P permutation matrix.

Ill-conditioning — how bad can it be?

Theorem [Knuth, ’84 or earlier]

Each full-column-rank U has a permuted graph basis P
[ I

X
]
with |xij | ≤ 1
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How to compute them?

The theory Choose submatrix B with maximal |detB|. Cramer’s rule on
[
row of X

]
=
[
row of U

]
B−1 gives xij =

det (other submatrix)
detB .

Related to rank-revealing factorizations, algebraic geometry but NP-hard!

The practice Find |xij | > 1, update basis simplex-algorithm–style

1 0 0
0.5 0.5 0
0 1 0
0 0 1
2 0 1




this row out

this row in

Relax to |xij | ≤ τ with τ > 1 for better convergence.
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Gains and losses

Condition number κ(V ) = σmax(V )
σmin(V ) determines column space sensitivity.

Theorem
If |xij | ≤ τ , then κ(P

[ I
X
]
) ≤
√

mnτ2 + 1

With respect to an orthogonal basis, we lose conditioning (but not too
much!), but we gain an identity submatrix. What use is it?

Several applications in optimization:
Approximate max(f ) on a large grid, cross-tensor approximation.
[Oseledets, Savostyanov, Tyrtishnikov et al, ’10]

Minimize function of a subspace (Grassmann manifold) f (U).
[Markovsky, Usevich ’14]

Precondition large-scale least-squares via “basis variables”.
[Arioli, Duff ’14]
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A structured version

Image of U ∈ C2n×n Lagrangian if UHJ2nU = 0, with J2n =

[
0 In
−In 0

]
.

Graph matrix U =

[
I
X

]
Lagrangian ⇐⇒ X Hermitian.

Not true for P
[

I
X

]
though: we must change the concept of permutation.

Symplectic swaps
Vector transformations generated by J2 on (xk , xn+k) for each k:[

x1 · · · −xn+k · · · xn | xn+1 · · · xk · · · x2n
]
.
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Lagrangian permuted graph bases

Theorem [Mehrmann, P. ’12]

If imU Lagrangian, then there exists Lagrangian permuted graph basis
U ∼ S

[ I
X
]
with S symplectic swap, X = XH and |xij | ≤

√
2.

Similar but not trivial, structure and allowed transformations must match.

Example 

1 0 0
0 1 0
0 0 1
1 2 3
2 4 5
3 5 6


∼



1 0 0
0 1 0
−1/2 −5/6 1/6
−1/2 −1/2 1/2
−1/2 −1/6 5/6
0 0 1


.

Allows us to store and operate on exactly Lagrangian subspace stably.
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Results for pencils
Definitions: matrix pencil: degree-1 matrix polynomial L(x) = L1x + L0.
Assume here regular, i.e., det L(x) 6≡ 0.

Eigenvalue, eigenvector of a pencil: L(λ)v = 0. Unchanged if I premultiply:

Definition

L(x) ∼ M(x) if L1 = BM1, L0 = BM0 for B square invertible.

Note that

L(x) ∼ M(x) ⇐⇒
[
L1 L0

]H
∼
[
M1 M0

]H
.

So one can use results on subspaces to normalize pencils

Example

L(x) ∼
[ 1 ∗ 0

0 ∗ 1
0 ∗ 0

]
x +

[ ∗ ∗ 0
∗ ∗ 0
∗ ∗ 1

]
, |∗| ≤ 1.
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Results for structured pencils

Symplectic pencils: L(x) ∈ C[x ]2n×2n such that L1J2nLH
1 = L0J2nLH

0 .[
L1 L0

]H
essentially Lagrangian (after some row/sign changes)

[ 1 0 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

]
x +

[ ∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 1 0
∗ ∗ 0 1

]
Among each two same-color columns, one is a column of I2n

The other entries satisfy |∗| ≤
√
2, and can be pieced together

(modulo signs) into a Hermitian matrix

Hamiltonian pencils: L(x) ∈ C[x ]2n×2n such that L1J2nLH
0 = −L0J2nLH

1 .[ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
x +

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
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Linear-quadratic optimal control
Common control-theory problem: compute stable (eigenvalues with
Reλ < 0) invariant subspace of 0 In 0

−In 0 0
0 0 0

 x −

 0 A B
AT Q S
BT ST R


Traditional solution (recast in our language): first enforce identityIn 0 0

0 In 0
0 0 0

 x −

∗ ∗ 0
∗ ∗ 0
∗ ∗ Im

 ;
Now it’s block triangular; deflate and work on block-2× 2 pencil in

orange.

The orange pencil is Hamiltonian, better to preserve structure.
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A different deflation
Why must the identity go there?∗ ∗ 0

∗ ∗ 0
∗ ∗ 0

 x −

∗ ∗ 0
∗ ∗ 0
∗ ∗ Im


Put columns of I in half of the green and blue columns. The deflated top

block-2× 2 pencil is Hamiltonian (in the format of our previous slide).

Example 0 1 0
−1 0 0
0 0 0

 x −

0 0 1
0 0 0
1 0 ε

 ∼
1 0 0
0 ε 0
0 −1 0

 x +

0 0 0
1 0 0
0 0 1


The deflation process is well-conditioned no matter how small ε is.
(unlike many other algorithms.)
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Invariant subspaces of Hamiltonians

Problem: compute stable (Reλ < 0) inv. subspace of a Hamiltonian pencil
(⇐⇒ solve a Riccati equation, if subspace U in graph basis)

Algorithm: a “pencil variant” of the matrix sign function iteration
A 7→ 1

2(A + A−1)

Two things needed at each step:
Compute left kernel of

[
L1
L0

]
: use permuted graph bases:

[
−X I

]
P−1P

[
I
X

]
= 0.

Normalize Hamiltonian pencil L1x + L0 keeping structure: use
Lagrangian permuted graph bases (i.e., of [ L1 L0 ]

H).
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Inverse-free sign method (with permuted graph bases)

Algorithm [Mehrmann, P. ’12 and ’13]

Input: L1x + L0 Hamiltonian;
1 compute [−M0 M1 ] left kernel of

[
L1
L0

]
;

2 replace L(x) with M0L1x + 1
2(M1L1 + M0L0);

3 compute Lagrangian permuted representation of L(x);
4 repeat 1–3 until convergence;
5 find kernel of L1 + L0;

How well does it go in practice? On a known set of benchmark problems
(CAREX, [Benner et al, ’95, Chu et al ’07]), first algorithm to get perfect
results on both:

subspace residual down to machine precision;
Lagrangian Structure preserved (exactly or up to machine precision).
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Figure : Relative subspace residual for the 33 CAREX problems in [Chu et al., ’07]
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Figure : Lagrangianity residual for the 33 CAREX problems in [Chu et al., ’07]
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Large scale AREs

This was for small-case dense problems; what about large, sparse control?
Often, the invariant subspace can be represented cheaply as

U ∼
[

I
ZZT

]
, with Z tall skinny.

Orthogonal basis not pursued, difficult to use this low-rank property.

A first attempt to use these ideas:

1 Run a standard solution algorithm (ADI) keeping not Z but
[

B
N

]
(up to ∼) such that Z = NB−1;

2 using the kernel trick [−X I ]P−1P
[ I

X
]
= 0, build stable low-rank

representation U ∼
[
I − V1V T

2
V3V T

4

]
, all the Vi tall skinny.

How does it work? Beneficial in some ill-conditioned cases, large ‖Z‖.
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An experiment

Figure : Comparison of ADI and PG-ADI, random matrix and RHS
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Large scale AREs

Theorem [Mehrmann, P. preprint]

Given orthogonal
[ B

N
]
such that Z = NB−1 ∈ Cn×m, we can build (quickly

and stably) tall skinny Vi such that and[
I

ZZT

]
∼ V =

[
I − V1V T

2
V3V T

4

]
, κ(V ) ≤

√
3√
2
(mnτ2 + nτ).
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Conclusions
Small dense case

Works great!
Large-scale case still preliminary work; interesting messages:

We can use permuted graph bases also in sparse problems.
The kernel trick [−X I ]P−1P

[ I
X
]
= 0 seems even more useful in the

tall skinny case.
Another reflection: for each Hamiltonian H, there is S such that for
S−1HS the invariant subspace problem “in Riccati form” U =

[ I
X
]
is

well-conditioned.
How to exploit this? Can we run permuted graph Newton?

And, finally:
Bases with identities are underrated. They work well if you keep
flexible on the position of the I submatrix. Try them!

Thanks for your attention!
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