A projection method for the solution of large-scale Lur'e equations

Federico Poloni ${ }^{1}$ Timo Reis ${ }^{2}$

${ }^{1}$ Technische Universität Berlin Supported by the A. von Humboldt Foundation
(Presentation AvH: tomorrow 16:30)
${ }^{2}$ Universität Hamburg
83 ${ }^{\text {rd }}$ Gamm Conference
Darmstadt, 26-30 March 2012

Control problems and even matrix pencils

Several problems in control theory (model reduction, positive real lemma) naturally expressed as deflating subspace problems for

Even matrix pencils

$$
\mathcal{A}-s \mathcal{E}=\left[\begin{array}{ccc}
0 & A & B \\
A^{*} & Q & S \\
B^{*} & S^{*} & R
\end{array}\right]-s\left[\begin{array}{ccc}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \mathcal{A}, \mathcal{E} \in \mathbb{R}^{n+n+m, n+n+m}
$$

$\mathcal{A}-s \mathcal{E}$ is even, i.e., $\mathcal{A}=\mathcal{A}^{*}, \mathcal{E}=-\mathcal{E}^{*}$
$n \gg m$, A large and sparse, Q low rank
We are looking for the maximal semi-stable \mathcal{E}-neutral deflating subspace, i.e.,

$$
\mathcal{A} U=V \widehat{\mathcal{A}} \quad \mathcal{E} U=V \widehat{\mathcal{E}} \quad U, V \in \mathbb{C}^{2 n+m, k} \quad U^{*} \mathcal{E} U=0
$$

What if R is singular?

The singular R case has been treated stepmotherly (T. Reis)

- the Riccati equation cannot be formed
- numerical problems: nontrivial Jordan blocks at infinity and/or singular pencil
- in engineering practice, often solved by perturbing+inverting R ARE must be replaced by a system

Lur'e equations

$$
\begin{aligned}
A^{T} X+X A+Q & =Y^{T} Y \\
X B+S & =Y^{T} Z \\
R & =Z^{T} Z
\end{aligned}
$$

(only X needed in practice)

Lur'e equations and deflating subspaces

Deflating subspace formulation

$$
\left[\begin{array}{ccc}
0 & -s l+A & B \\
s l+A^{*} & Q & S \\
B^{*} & S^{*} & R
\end{array}\right] \underbrace{\left[\begin{array}{cc}
X & 0 \\
I_{n} & 0 \\
0 & I_{m}
\end{array}\right]}_{U_{X}}=\left[\begin{array}{cc}
I_{n} & 0 \\
-X & Y^{*} \\
0 & Z^{*}
\end{array}\right]\left[\begin{array}{cc}
-s l+A & B \\
Y & Z
\end{array}\right]
$$

$\operatorname{ker} \mathcal{E}=\left[\begin{array}{c}0 \\ 0 \\ I_{m}\end{array}\right]$ "obvious" deflating subspace $(\lambda=\infty)$.
Partial subspace $\left[\begin{array}{cc}V_{1} & 0 \\ V_{2} & 0 \\ 0 & I\end{array}\right] \subseteq U_{X} \Longleftrightarrow$ Partial solution: $\begin{aligned} & X V_{2}=V_{1} \\ & X=V_{1} V_{2}^{+}+\cdots\end{aligned}$

Even Kronecker canonical form

Even Kronecker canonical form [Thompson, '76 \& '91], a powerful tool to analyze Lur'e equations theoretically [Reis, '11]
Canonical form under transformations of the kind $M^{T} \mathcal{A} M, M^{T} \mathcal{E} M$ (for any M nonsingular)

Plays well with

- deflating subspaces $(\mathcal{A}-s \mathcal{E}) U=V(\widehat{\mathcal{A}}-s \widehat{\mathcal{E}})$
- \mathcal{E}-neutrality $U^{T} \mathcal{E} U=0$ (and similar relations)

Even Kronecker canonical form [Thompson, '76 \& '91]
Every even matrix pencil (i.e., $\mathcal{A}=\mathcal{A}^{*}, \mathcal{E}=-\mathcal{E}^{*}$) can be reduced to a direct sum of the following block types...

Even Kronecker canonical form

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
& & & s & 1 \\
& & s & 1 & \\
& s & 1 & & \\
s & 1 & & & \\
1 & & & &
\end{array}\right]} \\
& \text { eigenvalues at } \infty
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
& & & i \mu-s \\
& & i \mu-s & 1 \\
& i \mu-s & 1 &
\end{array}\right]} \\
& \text { imaginary eigenvalues } i \mu
\end{aligned}
$$

The bad guys

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
& & & s & 1 \\
& & s & 1 & \\
& s & 1 & & \\
s & 1 & & & \\
1 & & & &
\end{array}\right]\left[\begin{array}{lllll}
& & & s & 1 \\
& & s & 1 & \\
\hline & s & & & \\
s & 1 & & & \\
1 & & & &
\end{array}\right]} \\
& \text { eigenvalues at } \infty \text { singular blocks }
\end{aligned}
$$

Singular $R \Leftrightarrow$ nontrivial blocks of one of these two kinds.
Theorem
For all solutions X, U_{X} contains the first $\frac{\ell-1}{2}$ vectors of each of these Kronecker chains ($\ell=$ length)

Wong sequences

Pencil generalization of the procedure used to compute Jordan chains/bases [Wong KT, '74] [Berger, Ilchmann, Trenn, '10]

Wong sequence (for $\lambda=\infty$)

$$
\mathcal{W}_{0}=\{0\}, \quad \mathcal{W}_{k+1}=\mathcal{E}^{-1}\left(\mathcal{A} \mathcal{W}_{k}\right)
$$

(The \mathcal{W}_{i} are subspaces, and $\mathcal{E}^{-1}=$ preimage)
Switch to even Kronecker form, everything here transforms well

Wong sequences of Kronecker blocks

$\mathcal{W}_{3} \mathcal{W}_{2} \mathcal{W}_{1}$

Problem: how to force them to stop at half the size of each block? Idea: that's exactly where they stop being \mathcal{E}-neutral!

\mathcal{E}-neutral Wong sequences

Wong sequence (for $\lambda=\infty$)

$$
\mathcal{V}_{0}=\{0\}, \quad \mathcal{Z}_{k}=\mathcal{E}^{-1}\left(\mathcal{A} \mathcal{V}_{k}\right), \quad \mathcal{V}_{k+1}=\mathcal{V}_{k}+\mathcal{Z}_{k} \cap \mathcal{Z}_{k}^{\mathcal{E} \perp}
$$

Theorem

\mathcal{E}-neutral Wong sequences are increasing ($\mathcal{V}_{0} \subseteq \mathcal{V}_{1} \subseteq \cdots$) and stabilize to the space spanned by the first $\frac{\ell+1}{2}$ vectors of each infinite (and singular) chain.
\mathcal{V}_{∞} gives a partial solution: $X V_{2}=V_{1}, X=V_{1} V_{2}^{+}+\cdots$ for some V_{1}, V_{2}. Question How to compute the remaining part?

Projected Lur'e equations

We multiply everything in the Lur'e equations by $\Pi=I-V_{2} V_{2}^{+}$, and get
Theorem
$\widetilde{X}=\Pi^{*} X \Pi$ satisfies projected Lur'e equations with

$$
\begin{aligned}
& \widetilde{A}=\Pi A \Pi, \quad \widetilde{Q}=\Pi^{*} Q \Pi, \quad \widetilde{B}=\left[\begin{array}{ll}
\Pi A V_{2} & \Pi B
\end{array}\right], \\
& \widetilde{S}=\left[\begin{array}{ll}
\Pi^{*} A^{*} V_{1}+\Pi^{*} Q V_{2} & \Pi^{*} S
\end{array}\right], \\
& \widetilde{R}=\left[\begin{array}{cc}
V_{2}^{*} A^{*} V_{1}+V_{1}^{*} A V_{2}+V_{2}^{*} Q V_{2} & V_{1}^{*} B+V_{2}^{*} S \\
B^{*} V_{1}+S^{*} V_{2} & R
\end{array}\right]
\end{aligned}
$$

Projected Lur'e equations

"Projection" \Longleftrightarrow zeroing out the critical subspace at infinity In the right basis,

$$
\Pi\left[\begin{array}{ccc}
0 & \widetilde{A}-s l & \widetilde{B} \\
\widetilde{A}^{*}+s l & \widetilde{Q} & \widetilde{S} \\
\widetilde{B}^{*} & \widetilde{S}^{*} & \widetilde{R}
\end{array}\right] \Pi^{T} \cong\left[\begin{array}{cccc}
0 & A_{1}-s l & B_{1} & 0 \\
A_{1}^{*}+s l & Q_{1} & S_{1} & 0 \\
B_{1}^{*} & S_{1}^{*} & R_{1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

R_{1} nonsingular, so we can turn this into a projected Riccati equation

$$
\left[\begin{array}{cc}
A_{11}^{*} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
Q_{11} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
G_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
X_{11} & 0 \\
0 & 0
\end{array}\right]
$$

We solve this ARE with Newton-ADI (Lyapack, [Benner, Li, Penzl, '08]).
Problem A_{11} is dense: we must use $\tilde{A}=\Pi A \Pi=\left(I-V_{2} V_{2}^{+}\right) A\left(I-V_{2} V_{2}^{+}\right)$ to preserve sparsity

What happens in ADI

ADI: lots of singular equations with ПАП:

$$
\left[\begin{array}{cc}
A_{R}-z l & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
0
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

In fact, if we work with $П А П-z l$ we regularize them for free:

$$
\left[\begin{array}{cc}
A_{R}-z l & 0 \\
0 & -z l
\end{array}\right]\left[\begin{array}{l}
x \\
0
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

Further trick: rewrite $\left(I-V_{2} V_{2}^{+}\right) A\left(I-V_{2} V_{2}^{+}\right) x=b$ as extended system

$$
\left[\begin{array}{ccc}
A & V_{2} & \Pi A V_{2} \\
V_{2}^{+} A & 1 & 0 \\
V_{2}^{+} & 0 & I
\end{array}\right]\left[\begin{array}{l}
x \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
$$

Preserves sparsity, now we can use sparse LU

To sum up

Algorithm

(1) Compute \mathcal{V}_{∞} "critical subspace" using \mathcal{E}-neutral Wong sequences
(2) Compute coefficients $\widetilde{B}, \widetilde{R}, \widetilde{S}$ of the projected equation, and sparse representations of $\widetilde{A}=\Pi А П, \widetilde{Q}=\Pi^{*} Q \Pi$
(3) Use Newton-ADI to solve the projected Riccati equation for \widetilde{X}. Use extended matrix approach for solvers.
(9) Assemble solution $X=V_{1} V_{2}^{+}+\widetilde{X}$

比 F. Poloni, T. Reis
On combining deflation and iteration to low-rank approximate solution of Lur'e equations
U Hamburg preprint, submitted.

Example I

Lur'e equations from positive real lemma
Demo system demo-r1 in Lyapack (heat equation on the square)

	demo-r1
n	2500
m	1
rank decisions accuracy	1.6×10^{-16}
infinite chains	$1 \times$ length 3
singular chains	0
rank of $X^{(1)}$	24
rank of $X-X^{(1)}$	23
no. of Newton steps needed	4
avg. ADI itns per Newton step	37.25
relative residual	2.6×10^{-15}
deviation from stability	-1.8×10^{-15}
$C P U$ time	17 s

Example II

Lur'e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)

	demo-r3
n	821
m	6
rank decisions accuracy	6.5×10^{-16}
infinite chains	$6 \times$ length 3
singular chains	0
rank of $X^{(1)}$	138
rank of $X-X^{(1)}$	130
no. of Newton steps needed	7
avg. ADI itns per Newton step	36.857
relative residual	5.5×10^{-15}
deviation from stability	-1.3×10^{-08}
CPU time	65 s

Example II

Lur'e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)
demo-r3

Thanks for your attention! Questions?
rank of $X-X^{(1)} \quad 130$
no. of Newton steps needed avg. ADI itns per Newton step 7 relative residual 5.5×10^{-15} deviation from stability -1.3×10^{-08} CPU time 65 s

