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Control problems and even matrix pencils

Several problems in control theory (model reduction, positive real lemma)
naturally expressed as deflating subspace problems for

Even matrix pencils

A− sE =

 0 A B
A∗ Q S
B∗ S∗ R

− s

 0 I 0
−I 0 0
0 0 0

 A, E ∈ Rn+n+m,n+n+m

A− sE is even, i.e., A = A∗, E = −E∗
n� m, A large and sparse, Q low rank

We are looking for the maximal semi-stable E-neutral deflating subspace,
i.e.,

AU =V Â EU =V Ê U,V ∈C2n+m,k U∗EU =0
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What if R is singular?
The singular R case has been treated stepmotherly (T. Reis)

the Riccati equation cannot be formed

numerical problems: nontrivial Jordan blocks at infinity and/or
singular pencil

in engineering practice, often solved by perturbing+inverting R

ARE must be replaced by a system

Lur’e equations

ATX + XA + Q =Y TY

XB + S =Y TZ

R =ZTZ

(only X needed in practice)
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Lur’e equations and deflating subspaces

Deflating subspace formulation

 0 −sI + A B
sI + A∗ Q S

B∗ S∗ R

X 0
In 0
0 Im


︸ ︷︷ ︸

UX

=

 In 0
−X Y ∗

0 Z ∗

[−sI + A B
Y Z

]

ker E =

 0
0
Im

 “obvious” deflating subspace (λ =∞).

Partial subspace

V1 0
V2 0
0 I

 ⊆ UX ⇐⇒ Partial solution:
XV2 = V1

X = V1V +
2 + · · ·
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Even Kronecker canonical form

Even Kronecker canonical form [Thompson, ’76 & ’91] , a powerful tool to
analyze Lur’e equations theoretically [Reis, ’11]

Canonical form under transformations of the kind MTAM, MTEM
(for any M nonsingular)

Plays well with

deflating subspaces (A− sE)U = V (Â − sÊ)

E-neutrality UTEU = 0 (and similar relations)

Even Kronecker canonical form [Thompson, ’76 & ’91]

Every even matrix pencil (i.e., A = A∗, E = −E∗) can be reduced to a
direct sum of the following block types. . .
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Even Kronecker canonical form



λ− s 1
λ− s 1

λ− s

λ̄+ s
1 λ̄+ s

1 λ̄+ s




s 1

s 1
s 1

s 1
1


paired eigenvalues (λ,−λ̄) eigenvalues at ∞


iµ− s

iµ− s 1
iµ− s 1

iµ− s 1




s 1
s 1

s
s 1
1


imaginary eigenvalues iµ singular blocks
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The bad guys


s 1

s 1
s 1

s 1
1




s 1
s 1

s
s 1
1


eigenvalues at ∞ singular blocks

Singular R ⇔ nontrivial blocks of one of these two kinds.

Theorem

For all solutions X , UX contains the first `−1
2 vectors of each of these

Kronecker chains (`=length)
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Wong sequences

Pencil generalization of the procedure used to compute Jordan
chains/bases [Wong KT, ’74] [Berger, Ilchmann, Trenn, ’10]

Wong sequence (for λ =∞)

W0 = {0}, Wk+1 = E−1(AWk)

(The Wi are subspaces, and E−1 = preimage)

Switch to even Kronecker form, everything here transforms well
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Wong sequences of Kronecker blocks

s 1

s 1

s 1

s 1

1





W1W2W3

W1 = span{en}
W2 = span{en−1, en}

...

Problem: how to force them to stop at half the size of each block?
Idea: that’s exactly where they stop being E-neutral!

s 1

s 1

s 1

s 1

1





W2W3
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E-neutral Wong sequences

Wong sequence (for λ =∞)

V0 = {0}, Zk = E−1(AVk), Vk+1 = Vk + Zk ∩ ZE⊥k

Theorem

E-neutral Wong sequences are increasing (V0 ⊆ V1 ⊆ · · · ) and stabilize to
the space spanned by the first `+1

2 vectors of each infinite (and singular)
chain.

V∞ gives a partial solution: XV2 = V1, X = V1V +
2 + · · · for some V1,V2.

Question How to compute the remaining part?
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Projected Lur’e equations

We multiply everything in the Lur’e equations by Π = I − V2V +
2 , and get

Theorem

X̃ = Π∗X Π satisfies projected Lur’e equations with

Ã = ΠAΠ, Q̃ = Π∗QΠ, B̃ =
[
ΠAV2 ΠB

]
,

S̃ =
[
Π∗A∗V1 + Π∗QV2 Π∗S

]
,

R̃ =

[
V ∗2 A∗V1 + V ∗1 AV2 + V ∗2 QV2 V ∗1 B + V ∗2 S

B∗V1 + S∗V2 R

]
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Projected Lur’e equations

“Projection” ⇐⇒ zeroing out the critical subspace at infinity
In the right basis,

Π

 0 Ã− sI B̃

Ã∗ + sI Q̃ S̃

B̃∗ S̃∗ R̃

ΠT ∼=


0 A1 − sI B1 0

A∗1 + sI Q1 S1 0
B∗1 S∗1 R1 0
0 0 0 0


R1 nonsingular, so we can turn this into a projected Riccati equation[

A∗11 0
0 0

] [
X11 0
0 0

]
+

[
X11 0
0 0

] [
A11 0
0 0

]
+

[
Q11 0
0 0

]
=

[
X11 0
0 0

] [
G11 0
0 0

] [
X11 0
0 0

]
We solve this ARE with Newton-ADI (Lyapack, [Benner, Li, Penzl, ’08] ).

Problem A11 is dense: we must use Ã = ΠAΠ = (I − V2V +
2 )A(I − V2V +

2 )
to preserve sparsity
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What happens in ADI

ADI: lots of singular equations with ΠAΠ:[
AR − zI 0

0 0

] [
x
0

]
=

[
b
0

]
In fact, if we work with ΠAΠ − zI we regularize them for free:[

AR − zI 0
0 −zI

] [
x
0

]
=

[
b
0

]
Further trick: rewrite (I − V2V +

2 )A(I − V2V +
2 )x = b as extended system A V2 ΠAV2

V +
2 A I 0

V +
2 0 I

x
0
0

 =

b
0
0


Preserves sparsity, now we can use sparse LU
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To sum up

Algorithm

1 Compute V∞ “critical subspace” using E-neutral Wong sequences

2 Compute coefficients B̃, R̃, S̃ of the projected equation, and sparse
representations of Ã = ΠAΠ, Q̃ = Π∗QΠ

3 Use Newton-ADI to solve the projected Riccati equation for X̃ . Use
extended matrix approach for solvers.

4 Assemble solution X = V1V +
2 + X̃

F. Poloni, T. Reis
On combining deflation and iteration to low-rank approximate solution
of Lur’e equations
U Hamburg preprint, submitted.
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Example I
Lur’e equations from positive real lemma
Demo system demo-r1 in Lyapack (heat equation on the square)

demo-r1

n 2500
m 1

rank decisions accuracy 1.6× 10−16

infinite chains 1 × length 3
singular chains 0

rank of X (1) 24

rank of X − X (1) 23
no. of Newton steps needed 4

avg. ADI itns per Newton step 37.25
relative residual 2.6× 10−15

deviation from stability −1.8× 10−15

CPU time 17 s

F. Poloni (TU Berlin) Projecting Lur’e equation GAMM ’12 15 / 16



Example II
Lur’e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)

demo-r3

n 821
m 6

rank decisions accuracy 6.5× 10−16

infinite chains 6 × length 3
singular chains 0

rank of X (1) 138

rank of X − X (1) 130
no. of Newton steps needed 7

avg. ADI itns per Newton step 36.857
relative residual 5.5× 10−15

deviation from stability −1.3× 10−08

CPU time 65 s

Thanks for your attention! Questions?
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