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Control problems and even matrix pencils

Several problems in control theory (model reduction, positive real lemma)
naturally expressed as deflating subspace problems for

Even matrix pencils

0 A B 0 /0
A—sE=|A* Q S|—s|-I 0 0] AEeRMmnmintm

A—s€iseven,ie, A=A £€=-&E*
n> m, A large and sparse, @ low rank

We are looking for the maximal semi-stable £-neutral deflating subspace,
i.e.,

AU =V A EU=VE U,V eC2rtmk U*EU =0
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What if R is singular?

The singular R case has been treated stepmotherly (T. Reis)

@ the Riccati equation cannot be formed

@ numerical problems: nontrivial Jordan blocks at infinity and/or
singular pencil

@ in engineering practice, often solved by perturbing+inverting R

ARE must be replaced by a system

Lur'e equations

ATX 4+ XA+Q=Y"Y
XB+S=YTZ7
R=z"Z7

(only X needed in practice)
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Lur'e equations and deflating subspaces

Deflating subspace formulation

0 —-sl+A B] [X 0 I, O
si+A Q S|l o|l=|-x v [_S’Y“‘ ?]
B* S* Rl [0 I, o z
N——
Ux
0
ker = | 0 | “obvious” deflating subspace (A = o0).
Im
| i 0 L Xw=V
Partial subspace |V, 0| C Ux <= Partial solution: n
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Even Kronecker canonical form

Even Kronecker canonical form [Thompson, '76 & '91] , a powerful tool to
analyze Lur'e equations theoretically [Reis, '11]

Canonical form under transformations of the kind MT AM, MTEM
(for any M nonsingular)

Plays well with
o deflating subspaces (A — s€)U = V(A — s&)
e &-neutrality UTEU = 0 (and similar relations)

Even Kronecker canonical form [Thompson, '76 & '91]

Every even matrix pencil (i.e., A= A* & = —&*) can be reduced to a
direct sum of the following block types. ..

F. Poloni (TU Berlin) Projecting Lur'e equation GAMM '12 5/ 16



Even Kronecker canonical form
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The bad guys

s 1 s 1
s 1 s 1
s 1 s
s 1 s 1
1 1
eigenvalues at co singular blocks

Singular R < nontrivial blocks of one of these two kinds.
Theorem

For all solutions X, Ux contains the first % vectors of each of these
Kronecker chains (¢/=length)
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Wong sequences

Pencil generalization of the procedure used to compute Jordan
chains/bases [Wong KT, '74] [Berger, lichmann, Trenn, '10]

Wong sequence (for A = o0)

Wo = {0}, Wis1 = EHAWY)

(The W are subspaces, and £~ = preimage)

Switch to even Kronecker form, everything here transforms well
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Wong sequences of Kronecker blocks

s
1

W3 Wh W1
L

s
1

0

s
1

1

Wi = span{e,}
W, = span{ep_1, en}

Problem: how to force them to stop at half the size of each block?
Idea: that's exactly where they stop being £-neutral!

W3 Wh
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E-neutral Wong sequences

Wong sequence (for A = o0)

Vo = {0}, Z = EH(AV), Vir1 = Ve + 2N 254

Theorem

E-neutral Wong sequences are increasing (Vo C Vi C - --) and stabilize to
the space spanned by the first e+71 vectors of each infinite (and singular)
chain.

Vo gives a partial solution: XV = Vi, X =W; V2+ + ... for some Vi, V5.

Question How to compute the remaining part?
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Projected Lur'e equations

We multiply everything in the Lur'e equations by [1=1— V) V;, and get
Theorem

X = 1" X[ satisfies projected Lur'e equations with

A=TIAM, Q=T"QM, B=I[MAv% 8],

S=[MA*VL +T*QV, [T*S],

B VZA*VI + VAL + V3 QVe VB + VIS
B*V4 + S5* Vs R
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Projected Lur'e equations

“Projection” <= zeroing out the critical subspace at infinity
In the right basis,

0 /Z—S/ E 0 Al—sl Bl 0
~ ~ ~ AT + sl o)) 5 0
. T~ [A1
A +sl Q@  SITT=1""p. S R0
B* S* R ! !
0 0 0 O

R1 nonsingular, so we can turn this into a projected Riccati equation

Aj; 0] (X110 n X110| |A110 n Qu 0|  [X110| [G110] [ X110
0O 0|0 O 0 0[]0 O 0 0o/ |0 0Ol|0 Ol|0 O
We solve this ARE with Newton-ADI (Lyapack, [Benner, Li, Penzl, '08] ).

Problem Ay is dense: we must use A = [TAM = (I — VLV, A(I — Vo V1)
to preserve sparsity
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What happens in ADI

ADI: lots of singular equations with [TA[T:

o™ alls] = b

In fact, if we work with 1Al — zI we regularize them for free:

o™ Sl

Further trick: rewrite (I — Vo V5,7 )A(I — Va V5 )x = b as extended system

AV, MAK] [x b
V;FA 10 | |of=|o
Viiooo 1] [o 0

Preserves sparsity, now we can use sparse LU
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To sum up

Algorithm
@ Compute V., “critical subspace” using £-neutral Wong sequences

© Compute coefficients B, R, S of the projected equation, and sparse
representations of A = [1All, Q = MT* Q[

© Use Newton-ADI to solve the projected Riccati equation for X. Use
extended matrix approach for solvers.

@ Assemble solution X = V; V2Jr + X

[3 F. Poloni, T. Reis
On combining deflation and iteration to low-rank approximate solution
of Lur'e equations
U Hamburg preprint, submitted.
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Example |
Lur'e equations from positive real lemma
Demo system demo-r1 in Lyapack (heat equation on the square)

demo-ri
n 2500
m 1

rank decisions accuracy 1.6 x 10710
infinite chains 1 x length 3

singular chains 0

rank of X1 24

rank of X — X(1) 23

no. of Newton steps needed 4
avg. ADI itns per Newton step 37.25

relative residual 2.6 x 1071°
deviation from stability —1.8 x 1071°
CPU time 17s
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Example Il

Lur'e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)

demo-r3
n 821
m 6

rank decisions accuracy 6.5 x 10710
infinite chains 6 X length 3

singular chains 0
rank of X(1) 138
rank of X — X(1) 130
no. of Newton steps needed 7

avg. ADI itns per Newton step 36.857
relative residual 5.5 x 1071°
deviation from stability —1.3 x 10798

CPU time 65s
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Example Il

Lur'e equations from positive real lemma
Demo system demo-r3 in Lyapack (rail profile)

demo-r3

Thanks for your attention! Questions?

rank of X — X(1) 130
no. of Newton steps needed 7
avg. ADI itns per Newton step 36.857
relative residual 5.5 x 1071°
deviation from stability —1.3 x 10798
CPU time 65s
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