Multivariate time series estimation via projections and matrix equations

Federico Poloni¹ Giacomo Sbrana²

¹U Pisa, Italy, Dept of Computer Science ²NEOMA Business School, Rouen, France

Structured Numerical Linear and Multilinear Algebra Analysis, Algorithms and Applications — September 2014

Moving average models

Moving average models [Lütkepohl '06 book, Tsay '14 book]

$$\{u_t \in \mathbb{R}^n\}$$
 Gaussian independent $N(0, I)$

$$y_t = A_0 u_t + A_1 u_{t-1}$$
 $MA(1)$

$$y_t = A_0 u_t + A_1 u_{t-1} + A_2 u_{t-2} + \dots + A_q u_{t-q}$$
 $MA(q)$

 $(A_i \text{ real square matrices}, y_t, u_t \text{ vectors})$

Example: Yearly inflation data looks a lot like a y_t

Our problem: estimation Given output y_t for t = 1, 2, ..., T, find the A_i 's

Scalar models popular for macroeconomics; multivariate ones less used because of estimation difficulties

Transfer function formalism

To $A_0u_t + A_1u_{t-1} + A_2u_{t-2} + \cdots + A_qu_{t-q}$ we associate

$$G(\lambda) = A_0 + A_1\lambda + A_2\lambda^2 + \dots + A_q\lambda^q$$

 $G(\lambda)$ assumed nonsingular (det $(A_0) \neq 0$), and all eigends outside unit circle

Definition

$$G^{\star}(\lambda) := A_0^{\top} + A_1^{\top} \lambda^{-1} + A_2^{\top} \lambda^{-2} + \dots + A_q^{\top} \lambda^{-q}$$

 λ "behaves like" a complex number on the unit circle

$$G(\lambda)G^{\star}(\lambda) = M_{-q}\lambda^{-q} + \dots + M_{-1}\lambda^{-1} + M_0 + M_1\lambda + \dots + M_q\lambda^q$$

is palindromic $(M_0 = M_0^{\top} \text{ and } M_{-i} = M_i^{\top} \text{ for each } i)$

Autocovariance generating function

$$G(\lambda)G^{\star}(\lambda) = M_{-q}\lambda^{-q} + \dots + M_{-1}\lambda^{-1} + M_0 + M_1\lambda + \dots + M_q\lambda^q$$

Theorem [Box, Jenkins, '76 book]

$$M_i = \mathbb{E}\left[y_t y_{t-i}^{ op}
ight]$$
 for each $i = -q, \dots, q$

- **1** Estimate $\tilde{M}_i := \frac{1}{T-1} \sum_{i=1}^T y_t y_{t-i}^{\top}$
- ② Factorize $\tilde{M}(\lambda) = \tilde{G}(\lambda)\tilde{G}^{\star}(\lambda)$

Point 2. is spectral factorization [Wiener, Kailath, Kucera, Ran et al, Ephremidze et al; many more for the scalar case]

Spectral factorization and matrix equations

$$M_{-1}\lambda^{-1} + M_0 + M_1\lambda = (A_1\lambda + A_0)(A_1\lambda + A_0)^*$$

Several approaches to solve it:

- ullet $Y=A_0A_0^{ op}$ solves $M_1Y^{-1}M_1^{ op}+Y=M_0$ [Ran et al., Meini, CH Guo...]
- $Z=-A_0^{-\top}A_1^{\top}$ solves $M_{-1}+M_0Z+M_1Z^2$ [Bini et al, Higham and Kim, Meerbergen and Tisseur...]
- $G(\lambda)$ left spectral divisor of $M(\lambda)$ [Gohberg-Lancaster-Rodman]: linearization (palindromic?)+ Schur form

Extreme accuracy not necessary here — larger error from approximations \tilde{M}_i already

What can go wrong

② Factorize $\tilde{M}(\lambda) = \tilde{G}(\lambda)\tilde{G}^{\star}(\lambda)$

Factorization $\tilde{M}(\lambda) = \tilde{G}(\lambda)\tilde{G}^*(\lambda)$ exists iff $\tilde{M}(z) \geq 0$ for each $z \in \mathbb{C}, |z| = 1$ \tilde{M}_i are only approximate, so this property may fail

Possible solutions...

- **①** Apply a correction to $\tilde{M}(z)$
- ② Robust factorization algorithm → do something in case of error (something like a "robust cho1")
- **3** Get better \tilde{M}_i 's

Possible solutions

Apply a correction to $\tilde{M}(z)$ [Brüll, P, Sbrana, Schröder, preprint] regularization approach: perturb polynomial to move eigenvalues

Other approaches for similar structures around

[Alam et al, Benner and Voigt, Grivet-Talocia, Guglielmi-Overton...]

Robust factorization algorithm Not much usable around! [Kucera, 91]

Trying to modify some (Riccati-type eigensolvers, symbolic Cholesky factorization [Janashia, Lagvilava, Ephremidze '11])

Get better \tilde{M}_i 's

Other (slower) estimation methods typically get better \tilde{M}_i 's, such as Maximum Likelihood (ML)

Our idea: get the \tilde{M}_i 's from projection + scalar ML

Algorithm

- **1** Choose weight row vector w, build scalar process $z_t = \{wy_t\}_{t=1,...,T}$
- ② Use scalar ML to get $g(\lambda)$
- $g(\lambda)g^{\star}(\lambda) = m(\lambda) = wM(\lambda)w^{\top}$
- **1** Repeat with many different w's to reconstruct $M(\lambda)$

Convergence properties to correct solution when $T \to \infty$ (technical) [P, Sbrana, submitted]

The algorithm in a picture

We take the blue road rather than the red

Many (easier) scalar problems rather than a (difficult) multivariate one

A 2×2 example

•
$$w = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
:

$$wM(\lambda)w^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \lambda^{-1} + \begin{bmatrix} e & f \\ f & g \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} \lambda \begin{pmatrix} 1 \\ 0 \end{bmatrix}$$

$$= a\lambda^{-1} + e + a\lambda$$

•
$$w = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
:
 $wM(\lambda)w^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \lambda^{-1} + \begin{bmatrix} e & f \\ f & g \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} \lambda \begin{pmatrix} 0 \\ 1 \end{bmatrix}$
 $= d\lambda^{-1} + g + d\lambda$

•
$$w = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
:
 $m(\lambda) = (a+b+c+d)\lambda^{-1} + (e+2f+g) + (a+b+c+d)\lambda$

If b = c, enough to get the remaining entries

Symmetric case

For a symmetric MA(1),

- $w = e_i$ for all i and $w = e_j + e_k$ for all $j \neq k$ enough to get $M(\lambda)$
- $A\lambda^{-1} + B + A\lambda$, with $A = A^{\top}, B = B^{\top}$ can be simultaneously diagonalized (congruence) \rightarrow easier to find spectral factorization

This is enough to solve some easier models:

- Exponentially weighted moving average (random-walk-plus-noise) MA(1) with symmetric matrices
- "Multiple trends" MA(2) with symmetric matrices and $M_1 = -4M_2$

Nonsymmetric case

Idea Use $w(\lambda)$, not constant w!

$$\begin{bmatrix} 1 & \lambda \end{bmatrix} \begin{bmatrix} y_{t,1} \\ y_{t,2} \end{bmatrix} = y_{t,1} + y_{t-1,2}$$

•
$$w = \begin{bmatrix} 1 & \lambda \end{bmatrix}$$

 $w(\lambda)M(\lambda)w^* = \begin{bmatrix} 1 & \lambda \end{bmatrix} \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \lambda^{-1} + \begin{bmatrix} e & f \\ f & g \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} \lambda \begin{pmatrix} \begin{bmatrix} 1 \\ \lambda^{-1} \end{bmatrix} \end{bmatrix}$
 $= c\lambda^{-2} + (a+d+f)\lambda^{-1} + e + 2b + g$
 $+ (a+d+f)\lambda + c\lambda^2$

MA(q+1): more difficult to estimate, but still scalar

Least squares and more weights

Each aggregation vector $w(\lambda)$ gives us several equations Combine them using least squares!

But...joint covariance?

Same-aggregation values (in red) easy to compute (independence) Black ones are hard \rightarrow set them to zero

Some results

Frobenius norm relative errors, 300 trials, 2×2 problem, excluding 48 non-passive samples. eigvals(theta)=[-0.927492, -0.172508]

Some more results

Symmetric model (EWMA), against out-of-the-box ML on the MA(1) representation (larger parameter space, difficult to enforce symmetry)

	T	Θ META	Θ ML	Σ_u META	Σ_u ML	Time META	Time ML
d=2, easy	200	202.52	236.77	108.28	109.11	1.55	59.99
	400	121.41	138.13	83.31	82.93	3.13	107.28
	1000	80.83	101.53	48.65	48.96	8.34	226.64
d=2, harder	200	69.51	78.26	97.50	98.31	1.36	46.53
	400	48.26	56.48	80.91	81.52	3.74	113.36
	1000	28.01	34.07	47.60	48.02	7.63	210.06
d=3, easy	200	205.07	254.49	135.26	136.41	2.65	201.41
	400	162.95	187.40	93.48	93.21	5.77	316.74
	1000	93.85	108.92	60.08	61.13	12.62	523.67
d=3, harder	200	86.66	107.22	123.86	124.19	2.81	202.95
	400	57.03	67.25	95.13	96.75	5.66	295.93
	1000	29.91	37.04	61.78	62.13	13.12	541.36

Frobenius norm parameter errors $\times 10^3$, average on 500 trials

+ real-life inflation test by Bankitalia

Parallelizability

```
Oparallel for i = 1:nWeights
    # Estimate g_i(\lambda) with weight w_i
  end
  # Put together estimates to form M(\lambda) (fast)
  # Spectral factorization (fast)
VS
  while (convergence)
    #compute likelihood(G(\lambda))
    #compute G_{i+1}(\lambda) from G_i(\lambda) using BFGS-like search
  end
  function likelihood(G)
    for t = 1 \cdot T
       # update state[t] from state[t-1], compute likelihood
    end
  end
```

Why isn't this...

Why isn't this model reduction/system identification? Similar to tangential interpolation [Antoulas, Beattie, Gugercin '10 inbook] but...

- No access to input u_t
- No possibility to get $G(\lambda)$ exactly: $G(\lambda)Q$ equally good
- We work on a "squared" version: not clear how to relate $g(\lambda)$ and $G(\lambda)$ in our setting

Why isn't this compressed sensing? Similar to phase retrieval [Candès, Strohmer, Voroninski '11], but

- it is a "matrix version", uncertainty by an orthogonal matrix
- no sparsity/rank constraint, we want full reconstruction with a full set of measurements

Why isn't this Kalman filtering?

KF assumes model known, our goal is estimating it here

Conclusions and issues

- Interesting idea to explore, new application area
- Works well in some cases (including symmetric problems)
- Still missing ideas: fit $G(\lambda)$ directly without squaring, find optimal weights and equations in LS
- Tricky to develop with the current software ecosystem
- Open problem: better "regularizing" spectral factorization algorithm:
 We know well how to solve Riccati-like equations, now we want to solve the ones that have no solution!

Conclusions and issues

- Interesting idea to explore, new application area
- Works well in some cases (including symmetric problems)
- Still missing ideas: fit $G(\lambda)$ directly without squaring, find optimal weights and equations in LS
- Tricky to develop with the current software ecosystem
- Open problem: better "regularizing" spectral factorization algorithm:
 We know well how to solve Riccati-like equations, now we want to

solve the ones that have no solution!

Thanks for your attention