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Moving average models

Moving average models [Liitkepohl '06 book, Tsay '14 book]
{us € R"} Gaussian independent N(0, /)

ye = Aot + Arur— MA(1)
Ye = Aout -+ A]_Ut_l -+ A2Ut_2 + -+ Aqut—q MA(Q)

(A; real square matrices, y;, u; vectors)

Example: Yearly inflation data looks a lot like a y;
Our problem: estimation Given output y; for t =1,2,..., T, find the A;'s

Scalar models popular for macroeconomics; multivariate ones less used
because of estimation difficulties
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Transfer function formalism
To Aout + Arus—1 + Asus—o + - - - + Aqui_gq We associate

G(A) = Ag + ALh + AgA% 4 -+ AgA J

G(\) assumed nonsingular (det(Ap) # 0), and all eigvals outside unit circle
Definition
G*(A):=A) + AN T+ AN 24 AT

A “behaves like” a complex number on the unit circle

GG (N\) = M_ A 94+ Mg A Mo+ My + -+ MgA?

is palindromic (Mo = My and M_; = M, for each i)
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Autocovariance generating function

GG (N\) = M_ A 94+ M g A Mo+ My + -+ MgA?

Theorem [Box, Jenkins, '76 book]

M,-:]E[ytytT_,-] foreachi=—q,...,q

© Estimate M, := % Z,-Tzl VYo
@ Factorize M(\) = G(\)G*()\)

Point 2. is spectral factorization [Wiener, Kailath, Kucera, Ran et al, Ephremidze
et al; many more for the scalar case]
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Spectral factorization and matrix equations

M_1 A7 4+ My + M\ = (ALh + Ag) (AL + Ag)*

Several approaches to solve it:
o Y = ApAJ solves My Y IM] + Y = My [Ran et al., Meini, CH Guo. . .|
o Z=—A; Al solves M_; + MyZ + My Z? [Bini et al, Higham and Kim,
Meerbergen and Tisseur. . . ]

@ G(\) left spectral divisor of M()) [Gohberg—Lancaster—Rodman]:
linearization (palindromic?)+ Schur form

Extreme accuracy not necessary here — larger error from approximations
M; already
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What can go wrong

@ Factorize M(\) = G(A\)G*(\)

Factorization M(\) = G()\)G*(\) exists iff M(z) > 0 for each
zeClz| =1
M; are only approximate, so this property may fail

Possible solutions. . .
@ Apply a correction to M(z)

@ Robust factorization algorithm — do something in case of error
(something like a “robust chol")

© Get better M;'s
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Possible solutions

approach: perturb polynomial to move eigenvalues
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Other approaches for similar structures around

[Alam et al, Benner and Voigt, Grivet-Talocia, Guglielmi-Overton. .. ]

Robust factorization algorithm Not much usable around! [Kucera, 91]

Apply a correction to M(z) [Briill, P, Sbrana, Schréder, preprint] regularization

Trying to modify some (Riccati-type eigensolvers, symbolic
Cholesky factorization [Janashia, Lagvilava, Ephremidze '11])
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Get better /\7/;’5

Other (slower) estimation methods typically get better M;’s, such as

Maximum Likelihood (ML)

Our idea: get the M;'s from projection + scalar ML

Algorithm

@ Choose weight row vector w, build scalar process z; = {wy;}¢=1 . T

@ Use scalar ML to get g(\)
@ 2(\)g*(A) = m(X) = wM(Nw"
© Repeat with many different w's to reconstruct M(\)

Convergence properties to correct solution when T — oo (technical) [P,

Sbrana, submitted]
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The algorithm in a picture

Autocovariances
M ~E |yt ]

compute

We take the blue road rather than the red

Observed | ML-estimate | Parameters | compute
data y; 1A of G\ [
aggregate
Scalars Parameters
Zy = WTyt ML-estimate| a; of g(\) compute

Autocovariances
my ~ E [tht—k]

Many (easier) scalar problems rather than a (difficult) multivariate one
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A 2 x 2 example

OW:[]. 0}:
wM(\wT = [1 o](i (ﬂxw ; ; +17 Z]A> H
=axl+e+al
OW:[O 1}:
wM(\wT = [0 1](? 2] A—1+F ;‘|+[Z CC!] ,\> m
=d\ T +g+dA
ow:[l 1}:

mA)=(a+b+ctd)A\tH(et+2f+g)+(atb+ct+d)

If b = c, enough to get the remaining entries
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Symmetric case

For a symmetric MA(1),

o w =g for all i and w = e; + ¢ for all j # k enough to get M(\)
e AN"1 4+ B+ A\ with A= AT, B = BT can be simultaneously
diagonalized (congruence) — easier to find spectral factorization

This is enough to solve some easier models:

e Exponentially weighted moving average (random-walk-plus-noise) —

MA(1) with symmetric matrices

e “Multiple trends" — MA(2) with symmetric matrices and
My = —4Ms
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Nonsymmetric case

Idea Use w(A\), not constant w!

[1 A] BZ;] = Y1+ Ye-12

ow=1 )

WM\ )w* = [1 )] Qi 3] A—1+lf. ; + [Z 2] A) [Alll

=cA 2?4+ (at+d+fH)Att+e+2b4g
+(a+d+ )N+

MA(q + 1): more difficult to estimate, but still scalar
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Least squares and more weights

Each aggregation vector w(\) gives us several equations

Combine them using least squares!

But. .. joint covariance?
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Same-aggregation values (in red) easy to compute (independence)

Black ones are hard — set them to zero
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Some results

0.2 8
_— LongAR Quicker but less
0.15 | B accurate method
71 META Our method
(Moment Estimation
Through
0.1 | Aggregation)
CML Conditional
Maximum
0.05 |- n Likelihood. Scales
badly, basically
I impossible to beat
0l N

| | |
ZiongAR ZMETA  ZcmL

Frobenius norm relative errors, 300 trials, 2 X 2 problem, excluding 48 non-passive samples.

eigvals(theta)=[-0.927492, -0.172508]
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Some more results

Symmetric model (EWMA), against out-of-the-box ML on the MA(1)
representation (larger parameter space, difficult to enforce symmetry)

T [ OMETA O ML | 5, META %, ML | Time META _Time ML
200 | 202.52  236.77 | 108.28  109.11 155 59.00
Zaszy2' 400 | 121.41 13813 | 8331 82.93 3.13 107.28
1000 | 80.83 10153 | 48.65 48.96 8.34 226.64
200 | 6951  78.26 97.50 98.31 1.36 46.53
::d:' 400 | 4826  56.48 80.91 81.52 374 113.36
I r
1000 | 28.01  34.07 47.60 48.02 7.63 210.06
200 | 205.07 25449 | 13526  136.41 2.65 201.41
:a:y3' 400 | 162.95 187.40 | 9348 93.21 5.77 316.74
1000 | 93.85  108.92 | 60.08 61.13 12.62 523.67
200 | 86.66 10722 | 123.86  124.19 281 202.05
:azsr’ 400 | 57.03  67.25 95.13 96.75 5.66 295.93
1000 | 29.91  37.04 61.78 62.13 13.12 541.36

Frobenius norm parameter errors x 103, average on 500 trials

+ real-life inflation test by Bankitalia
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Parallelizability

@parallel for i = 1:nWeights
# Estimate gi(\) with weight w;
end
# Put together estimates to form M(X) (fast)
# Spectral factorization (fast)

VS

while (convergence)
#compute likelihood(G(\))
#compute Gii1(\) from Gj(\) using BFGS-like search
end
function likelihood(G)
for t = 1:T
# update state[t] from state[t-1], compute likelihood
end
end
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Why isn't this. ..

Why isn’t this model reduction/system identification? Similar to
tangential interpolation [Antoulas, Beattie, Gugercin '10 inbook] but. ..

@ No access to input u;
e No possibility to get G(\) exactly: G(A\)Q equally good

@ We work on a “squared” version: not clear how to relate g(\) and
G(A) in our setting

Why isn’t this compressed sensing? Similar to phase retrieval [Candes,
Strohmer, Voroninski '11], but

@ it is a “matrix version”, uncertainty by an orthogonal matrix

@ no sparsity/rank constraint, we want full reconstruction with a full set
of measurements

Why isn’t this Kalman filtering?

@ KF assumes model known, our goal is estimating it here
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Conclusions and issues

@ Interesting idea to explore, new application area
@ Works well in some cases (including symmetric problems)

e Still missing ideas: fit G(\) directly without squaring, find optimal
weights and equations in LS

@ Tricky to develop with the current software ecosystem

@ Open problem: better “regularizing” spectral factorization algorithm:

We know well how to solve Riccati-like equations, now we want to
solve the ones that have no solution!
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Thanks for your attention
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