Interval arithmetic methods to verify the stabilizing solution of an algebraic Riccati equation

Tayyebe Haqiri¹ <u>Federico Poloni</u>²

¹Shahid Bahonar University of Kerman, Iran ²U Pisa, Italy, Dept of Computer Science

> 20th ILAS conference Leuven, July 2016

Overview

Goal: compute a set X which contains (for sure, not "up to small computational errors") the stabilizing solution X_s of

$$0 = F(X) = A^{\top}X + XA + Q - XGX.$$

Do not use more than $O(n^3)$ flops.

Plan

- Convince you that interval arithmetic is a good idea.
- Show you what people did to verify Riccati equations.
- Show you the improvements we introduced.
- Competitors, experiments, and other ideas.

Basic idea if $a \in [1, 2]$ and $b \in [3, 4]$, then $a + b \in [4, 6]$ and $ab \in [3, 8]$. Store (*min*, *max*) (or (*center*, *radius*)) and operate on them. IR, IC.

With IEEE arithmetic + rounding in the correct direction, the inclusions work irrespective of machine errors.

Machine numbers can be embedded in \mathbb{IR} as radius-0 intervals.

Wrapping effect

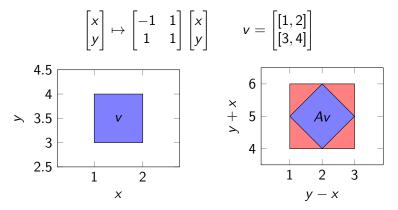


Image of v: blue square. Interval result: red+blue. This happens even though $\kappa(A) = 1!$

Verify, don't solve

The first rule of interval arithmetic

You don't solve your problem with interval arithmetic.

Things like back-substitution would create huge intervals. E.g., solving AX + XB = C with Bartels-Stewart: hopeless.

Instead:

$$g(\mathbf{x}) \subset \mathbf{x}$$
 implies $\mathbf{x} = \mathbf{g}(\mathbf{x})$ for some $\mathbf{x} \in \mathbf{x}$

- compute (with usual methods) an approximate solution \tilde{x} .
- reformulate as x = g(x), e.g., x = x Rf(x).
- choose an interval $x \ni \tilde{x}$, e.g., $\tilde{x} [0.9, 1.1]f(\tilde{x})$
- check (hopefully) $g(\mathbf{x}) \subset \mathbf{x}$.
- if not, enlarge x, e.g., $x \leftarrow [0.9, 1.1]g(x)$ and retry.

Details omitted; e.g.: need care with computing $\mathbf{x} - Rf(\mathbf{x})$.

The Krawczyk method

Ingredients:

- approximate solution \tilde{x} .
- slope S_x : set such that there is $S \in S_x$ satisfying

$$f(x) - f(ilde{x}) = S(x - ilde{x})$$
 for all $x \in \mathbf{x}$. (*

Often related to an interval evaluation of $f'(\mathbf{x})$.

• preconditioner R: approximate inverse of some matrix in S_x .

Theorem [Krawczyk '69, Rump '83]

If, for some interval δ ,

$$\operatorname{int}(\delta) \supseteq -Rf(\tilde{x}) + (I - R\boldsymbol{S}_{\tilde{x}+\delta})\delta,$$

then $\tilde{x} + \delta$ contains a solution of f(x) = 0. If (*) holds replacing \tilde{x} with every $y \in \mathbf{x}$, then the solution is unique.

Verifying Riccati equations

$$F(X) = A^{\top}X + XA + Q - XGX$$

 $O(n^3)$ algorithm: [Hashemi '12]

- \tilde{X} from your favorite method.
- $\boldsymbol{S}_{\boldsymbol{X}}$: $F'(\boldsymbol{X}) = (A G\boldsymbol{X})^{\top} \otimes \boldsymbol{I} + \boldsymbol{I} \otimes (A G\boldsymbol{X})^{\top}$ works.
- *R*: can't use Bartels-Stewart. Instead: explicit eigendecomposition $(A GX) \approx VDV^{-1}$ and

$$R = (V^{-\top} \otimes V^{-\top})(D^{\top} \otimes I + I \otimes D^{\top})^{-1}(V^{\top} \otimes V^{\top})$$

Additional manipulations: $(I - R\boldsymbol{S}_{\boldsymbol{X}}) = (V^{-\top} \otimes V^{-\top})(\cdots)(V^{\top} \otimes V^{\top})$

Again, many details omitted; for instance, dealing properly with $W \approx V^{-1}$.

Improving Hashemi's method

Our goal: construct an enclosure \boldsymbol{X} for the stabilizing solution X_s . Plan:

- Compute an enclosure **X** starting from $\tilde{X} \approx X_s$.
- Verify that each matrix in A GX is stabilizing.
- Uniqueness follows from classical Riccati theory. [Brockett, '70]

Letting go of uniqueness allows some improvements:

- Tighter slope S_X.
- 2 Defer the change of basis as in [Frommer Hashemi '09].
- Solution Verify a different equation using tricks from [Mehrmann P. '12].

Improvements

1 Tighter slope S_X We can use $S_x = (A - GX)^\top \otimes I + I \otimes (A - G\tilde{X})^\top$.

2 Defer the change of basis

Find **Y** that encloses a solution of $\hat{F}(Y) = V^{\top} f(V^{-\top} Y V^{-1}) V$: Easier, because \hat{F}' is diagonal.

Then, compute $\mathbf{X} = V^{-\top} \mathbf{Y} V^{-1}$. Even if $Y \in \mathbf{Y}$ unique solution, other solutions may end up in \mathbf{X} due to wrapping effects.

[Frommer Hashemi '09] introduced this trick for sqrtm.

Improvements

Verify a different equation

$$CARE \iff \begin{bmatrix} A & -G \\ -Q & -A^{\top} \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (A - GX)$$

[Mehrmann P. '12]: one can find a basis for $\operatorname{im}\begin{bmatrix} I \\ X \end{bmatrix}$ with an identity in different position (i.e., $\operatorname{im}\begin{bmatrix} I \\ X \end{bmatrix} = \operatorname{im} \Pi\begin{bmatrix} I \\ Y \end{bmatrix}$, Π permutation matrix) so that $|Y|_{ij} \leq \sqrt{2}$.

As above, we can verify a Riccati equation for Y rather than one for X.

Smaller / more balanced entries \implies easier verification.

Verify a different equation

Algorithm

- Compute approximate CARE solution \tilde{X}
- Compute Π so that $\operatorname{im} \begin{bmatrix} l \\ \tilde{X} \end{bmatrix} = \operatorname{im} \Pi \begin{bmatrix} l \\ \tilde{Y} \end{bmatrix}$, with \tilde{Y} bounded.

• Form the CARE associated with $\Pi^{-1} \begin{bmatrix} A & -G \\ -Q & -A^{\top} \end{bmatrix} \Pi$ instead of

$$\begin{bmatrix} A & -G \\ -Q & -A^{\top} \end{bmatrix}.$$

• Compute an inclusion $\mathbf{Y} \supseteq Y_s$ of its stable solution.

•
$$\boldsymbol{X} = \boldsymbol{U}_2 \boldsymbol{U}_1^{-1}$$
, where $\Pi \begin{bmatrix} I \\ \boldsymbol{Y} \end{bmatrix} = \begin{bmatrix} \boldsymbol{U}_1 \\ \boldsymbol{U}_2 \end{bmatrix}$. Other solutions may enter \boldsymbol{X} .

Summing up

- Start from an approximate stabilizing solution \tilde{X}
- Use the above methods to construct $X \ni \tilde{X}$ containing a solution
- If all the matrices in X are stabilizing, bingo!

Alternative approach (main competitor): [Miyajima '15].

Mix between the above methods and explicit normwise bounds. Idea:

- Newton-like iteration X = g(X), $g(X) = X (F'_{\tilde{X}})^{-1}(F(X))$.
- Formula for $F'_{\tilde{X}}$ using an eigendecomposition of $A G\tilde{X}$, as earlier.
- Expand $g(\mathbf{X})$, where $\mathbf{X} = (\tilde{X} \eta R, \tilde{X} + \eta R)$ (for a specific choice of R), as a function of η .
- Using inequalities, determine η such $\mathbf{X} \supseteq g(\mathbf{X})$ (if possible).
- Compute η using interval arithmetic and rounding.
- Uniqueness and stabilizing-ness verified a posteriori.

Diagonalizability

Verification methods tested on the benchmarks in CAREX [Benner et al '95]

OK on many of them, but we are still not satisfied:

CAREX Example 1 [Benner et al '95] $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad G = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad X_s = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ This example can be used for a first verification of any solver for [CAREs].

This example can be used for a first verification of any solver for [CAREs] since the solution may be computed by hand.

 $A - GX_s$ is not diagonalizable \implies all methods fail on this 'warm-up' example.

Non-diagonalizable problems

New algorithm: not as effective as the others, but it works in $O(n^3)$ even if $A - GX_s$ is (almost) not diagonalizable.

Idea

- Rewrite as a CARE in Δ , where $X = \tilde{X} + \Delta$: $\hat{A}^* \Delta + \Delta \hat{A} + \hat{Q} - \Delta G \Delta = 0.$
- Mimic ADI: fixed-point eqn $\Delta = (\hat{A} sI)^{-\top} (\Delta G \Delta \hat{Q} \Delta (A + sI)).$
- Are there parameters that we can tune? Choice of *s*, and then change of basis:

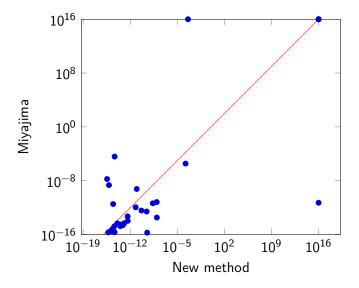
$$\Delta_V = V^* \Delta V, \quad A_V = V^{-1} \tilde{A} V, \ Q_V = V^* \tilde{Q} V, \ G_V = V^{-1} G V^{-*}.$$

No need to diagonalize this time. In practice, we choose V = orthogonal Schur factor of \hat{A} , $s = -\lambda_{\max}(\hat{A})$ Performance profile on CAREX suite in [Chu et al '07]

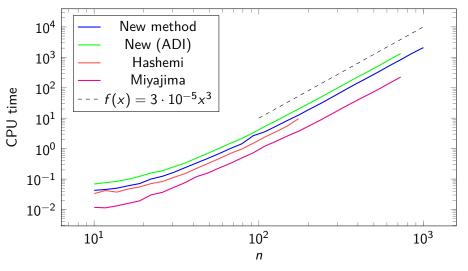


Top left = better.

(Norm-2) width of found interval



CPU time on CAREX 15



Lower = better. New = only method to reach n = 1000.

F. Poloni (U Pisa)

Conclusions

- Technical improvements and ideas from Riccati theory take Krawczyk-based method to state-of-the-art level.
- No method always better than the others, so it is useful to have more choice.
- In almost all cases, the first solution guess \$\tilde{x} [0.9, 1.1]f(\tilde{x})\$ already works so there is still room to optimize.
- Up next: transfer some of these improvements to Miyajima's method.

Conclusions

- Technical improvements and ideas from Riccati theory take Krawczyk-based method to state-of-the-art level.
- No method always better than the others, so it is useful to have more choice.
- In almost all cases, the first solution guess \$\tilde{x} [0.9, 1.1]f(\tilde{x})\$ already works so there is still room to optimize.
- Up next: transfer some of these improvements to Miyajima's method.

[Thanks for your attention!]