Perturbing Palindromic Matrix Equations to Make Them Solvable

Federico Poloni¹
Joint work with Tobias Brüll², Giacomo Sbrana³, Christian Schröder⁴

 1 U Pisa, Dept of Computer Science 2 Computer Simulation Technology AG/ TU Berlin alumnus 3 Rouen Business School, France 4 TU Berlin, Germany

Advances in Matrix Functions and Matrix Equations U Manchester, April 2013

VARMA(1,1) models

VARMA(1,1) [Lütkepohl, book '05]

$$x_t - \Phi x_{t-1} = u_t - \Theta u_{t-1}$$

 $x_t = \text{observed variable} \in \mathbb{R}^d$

 u_t = white noise (enough to assume uncorrelated) $\in \mathbb{R}^d$

$$\Phi, \Theta \in \mathbb{R}^{d \times d}$$
, $\rho(\Phi) < 1$, $\rho(\Theta) < 1$

Many known models to simulate volatility reduce to VARMA(1,1):

- GARCH(1,1)
- Multivariate stochastic volatility models

Estimating VARMAs

Problem

Given enough observations (x_t) generated by a VARMA, determine parameters Φ , Θ

A common choice is QML (quasi-maximum-likelihood):

- \bullet Assume u_t Gaussian independent
- ② Given guesses $\hat{\Phi},\hat{\Theta}$, compute likelihood $\ell(\hat{\Phi},\hat{\Theta})$ of generating the given time series
- Feed $\ell(\cdot,\cdot)$ into a black-box minimization procedure (e.g., Matlab's fminunc)

Problems with QML

- Costly: each function evaluation costs $O(nd^3)$, with n = length of time series. Hundreds or thousands required
- Black-box: difficult to implement and tweak, and understand what's going on.
- No convergence guarantees, non-convex optimization problem in many variables
- Hey doc, what if our u_t isn't Gaussian independent?

Our attempt

Moment estimator: determine Φ, Θ as a function of the autocovariances

$$M_k = \mathbb{E}\left[x_t x_{t+k}^T\right]$$

We will show $(\Phi, \Theta) = f(M_0, M_1, M_2)$

GMM estimator

- **①** Compute sample autocovariances $\hat{M}_k = \frac{1}{n} \sum x_t x_{t+k}^T$
- ② Get $(\hat{\Phi}, \hat{\Theta}) = f(\hat{M}_0, \hat{M}_1, \hat{M}_2)$
 - Very fast: working only with $d \times d$ matrices, no dependence on n (after computing moments)
 - Good asymptotic properties
 - In simulated experiments, not as accurate as QML, but good as initial value / low complexity estimate

Already known for univariate GARCH; generalization requires some linear algebra machinery

Yule-Walker results

The parameter Φ is easy to obtain:

Theorem

$$\Phi = M_{k+1}M_k^{-1}$$
 for each $k \ge 1$

Can solve any of these equations, e.g. $\hat{\Phi}=\hat{M}_2\hat{M}_1^{-1}$ or many of them in the least-squares sense

If you heard about Hankel matrices and time series, that's where they arise

Estimating Θ

Let
$$r_t = x_t - \Phi x_{t-1} = u_t - \Theta u_{t-1}$$
, $Y := \mathbb{E}\left[u_t u_t^T\right]$

$$A_0 := \mathbb{E}_t\left[r_t r_t^T\right] = M_0 - \Phi M_1^T - M_1 \Phi^T + \Phi M_0 \Phi^T = Y + \Theta Y \Theta^T$$

$$A_1 := \mathbb{E}_t\left[r_t r_{t+1}^T\right] = M_1 - \Phi M_0 = -\Theta Y$$

Blue expressions allow us to compute A_0 , A_1 .

Use them + red expressions to decouple equations for Y, $X = \Theta^T$

$$A_0 = Y + A_1 Y^{-1} A_1^T, \quad Y > 0$$
 (BARE)
 $A_1^T + A_0 X + A_1 X^2 = 0$ (UME)

Two related matrix equations

$$A_0 = Y + A_1 Y^{-1} A_1^T, \quad Y > 0$$
 (BARE)
 $A_1^T + A_0 X + A_1 X^2 = 0$ (UME)

Solve any one of them, then $A_1 = -X^T Y$

(UME) looks more appealing, relation with quadratic eigenproblems However, (BARE) more natural: no "hidden symmetry constraints" [Engwerda et al, '93], [Meini, '02], [Guo et al, '10, '11, '12]

Spectral factorization problem

$$z^{-1}A_1^T + A_0 + zA_1 = (I - zX^T)Y(I - z^{-1}X)$$

Eigenvalue s of $I - zX^T$ outside the unit circle, $I - z^{-1}X$ inside

Existence of the solution

Existence and unicity

- Solution exists if $Q(\lambda) := A_1^T \lambda^{-1} + A_0 + A_1 \lambda$ is such that $Q(\lambda) > 0$ for each λ on unit circle [Engwerda *et al*, '93]
- Solution unique if we ask Y > 0, $\rho(X) < 1$ (as was assumed)

Of course, if the model is well-posed, there must be a solution... But observed data \hat{A}_0 , \hat{A}_1 might give unsolvable equations

Rather than giving up, perturb them to make the model solvable

Similar techniques (for other problems) in [Brüll, Schröder '12], [Alam, Bora, Byers, Overton '11]

Spectral plot

Figure: Eigenvalues of $Q(e^{i\omega})$

Figure: Generalized eigenvalues of Q()

Red/Yellow: sign characteristic of unimodular eigenvalues Same thing as upward/downward slope in the graph on the left

Perturbing eigenvalues

Perturbation behaviour: eigenvalues on the unit circle coalesce in pair to leave it

Plan: Perturb the matrices to make the eigenvalues coalesce — but how to pair them?

The other setting

Everything clearer if we look at the other plot

- Coalesce one red and one yellow point
- Red points move towards right, yellow ones towards left

F. Poloni (U Pisa) Perturbing Matrix Eqns Fun13, Manchester 12 / 20

Moving eigenvalues

Can use eigenvalue perturbation theory to predict (first-order) location of the unimodular eigenvalues after a perturbation

Theorem

If (λ, u) is a simple unimodular eigenpair of $\lambda^{-1}A_1^* + A_0 + \lambda A_1$, an eigenvalue of $\lambda^{-1}(A_1^* + E_1^*) + (A_0 + E_0) + \lambda(A_1 + E_1)$ is given by

$$\tilde{\lambda} = \lambda - \frac{u^*(\lambda^{-1}E_1^* + E_0 + \lambda E_1)u}{u^*(-\lambda^{-2}A_1^* + A_1)u} + O(\|E_0, E_1\|)$$

Given a perturbation ansatz

$$A_i = \sum_k \delta_k E_i^{(k)}, \quad i = 0, 1$$

one can choose the δ_k such that the perturbed eigenvalues are (approximately) in a specified location (linear least-squares problem)

Iterative perturbation

$$A_i = \sum_{i} \delta_k E_i^{(k)}, \quad i = 0, 1$$

- **1** Choose step-size au
- Compute unimodular eigenvalues
- **③** Choose new desired location at distance au in the right direction
- Compute first-order location under each $(E_0^{(k)}, E_1^{(k)})$
- **5** Solve least-squares problem to compute δ_k that obtain best match
- Repeat

Problem

$$A_0 := M_0 - \Phi M_1^T - M_1 \Phi^T + \Phi M_0 \Phi M^T$$

$$A_1 := M_1 - \Phi M_0 \qquad \Phi = M_2 M_1^{-1}$$

Perturbing A_i "unnatural", since they come from observed M_i

Solution work on extended equation

$$\lambda^{-1} \begin{bmatrix} M_1^T & M_0^T & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} M_0 & M_1 & M_2 \\ M_1^T & M_0 & M_1 \\ M_2^T & M_1^T & 0 \end{bmatrix} + \lambda \begin{bmatrix} M_1 & 0 & 0 \\ M_0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Construct a linear perturbation basis $(E_0^{(k)}, E_1^{(k)})$ corresponding to entrywise perturbations of the M_i

15 / 20

Examples: closed-form estimator

Figure: Diagonal GARCH, d=2, $\rho(\Theta)=0.6$, n=1000

Examples: closed-form estimator

Figure: Diagonal GARCH, d=2, $\rho(\Theta)=0.6$, n=1000

F. Poloni (U Pisa)

Examples: solvability enforcement

Figure: VARMA with $\rho(\Phi)=0.9$, $\rho(\Theta)=0.87$, d=2 (left) or 4 (right), n=10000. Blue x= enforcement needed

Examples: solvability enforcement

Figure: VARMA with $\rho(\Phi)=0.9$, $\rho(\Theta)=0.995$, d=2 (left) or 4 (right), n=10000. Blue x= enforcement needed

Possible improvements

- ullet Work on Θ and Φ at the same time
- Combine with an iterative ML-like optimization e.g., GLS (generalized least squares) for GARCH?
- Spectral factorization with higher polynomial degrees

Possible improvements

- ullet Work on Θ and Φ at the same time
- Combine with an iterative ML-like optimization e.g., GLS (generalized least squares) for GARCH?
- Spectral factorization with higher polynomial degrees

Thanks for your attention!