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VARMA(1,1) models

VARMA(I,].) [Lutkepohl, book '05]

Xt — Pxp_1 = up — Oup_1
x¢ = observed variable € R?

u = white noise (enough to assume uncorrelated) € R
?,0 c R4 p(d) <1, p(O) <1

Many known models to simulate volatility reduce to VARMA(1,1):
o GARCH(1,1)

o Multivariate stochastic volatility models
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Estimating VARMAs

Problem

Given enough observations (x;) generated by a VARMA, determine
parameters @, ©

A common choice is QML (quasi-maximum-likelihood):

© Assume u; Gaussian independent

@ Given guesses $,6, compute likelihood 6(@, é) of generating the
given time series

© Feed /(+,-) into a black-box minimization procedure (e.g., Matlab'’s
fminunc)
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Problems with QML

© Costly: each function evaluation costs O(nd®), with
n = length of time series. Hundreds or thousands required

@ Black-box: difficult to implement and tweak, and understand what's
going on.

© No convergence guarantees, non-convex optimization problem in
many variables

@ Hey doc, what if our u; isn't Gaussian independent?
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Our attempt

Moment estimator: determine @, © as a function of the autocovariances
M =E {tht-,;rk}
We will show (@, 0) = f(My, My, My)

GMM estimator

© Compute sample autocovariances M, = IS xex
Q Get ($,0) = (Mo, My, W)

@ Very fast: working only with d x d matrices, no dependence on n
(after computing moments)

@ Good asymptotic properties

@ In simulated experiments, not as accurate as QML, but good as initial
value / low complexity estimate

Already known for univariate GARCH; generalization requires some linear
algebra machinery
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Yule-Walker results

The parameter @ is easy to obtain:

Theorem
P = Mk+1Mk_1 for each k > 1 J

Can solve any of these equations, e.g. & = Mle_l
or many of them in the least-squares sense

If you heard about Hankel matrices and time series, that's where they arise
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Estimating ©

Let rp = xt — Px¢_1 = uy — Ous_1, Y =K [utu”
Ao =, [rtrt} Mo — DMy — My + dMedT = Y +OYOT
A; =, [rtrtﬂ} My — &My = —OY

Blue expressions allow us to compute Ag, A;.
Use them + red expressions to decouple equations for Y, X =7

A=Y +A YAl Y>o0 (BARE)
Al 4+ AgX + A1X? =0 (UME)
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Two related matrix equations

A=Y +AY Al vY>o0 (BARE)
Al 4+ AX + A1X? =0 (UME)
Solve any one of them, then A; = —XTy

(UME) looks more appealing, relation with quadratic eigenproblems
However, (BARE) more natural: no “hidden symmetry constraints”
[Engwerda et al, '93], [Meini, '02], [Guo et al, '10, '11, '12]

Spectral factorization problem

z AT+ Ag 4 zA = (1 = 2XT) Y (I — z71X)

Eigenvalue s of | — zXT outside the unit circle, | — z71 X inside
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Existence of the solution

Existence and unicity

o Solution exists if Q(A\) := Af A~1 4+ Ag + A1\ is such that Q(\) > 0
for each A on unit circle [Engwerda et al, '93]

@ Solution unique if we ask Y >0, p(X) < 1 (as was assumed)

Of course, if the model is well-posed, there must be a solution. ..
But observed data Ag, A; might give unsolvable equations

Rather than giving up, perturb them to make the model solvable

Similar techniques (for other problems) in [Briill, Schroder '12], [Alam, Bora,
Byers, Overton '11]
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Spectral plot
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Figure: Eigenvalues of Q(e™) Figure: Generalized eigenvalues of Q()

Red/Yellow: sign characteristic of unimodular eigenvalues
Same thing as upward/downward slope in the graph on the left
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Perturbing eigenvalues
Perturbation behaviour: eigenvalues on the unit circle coalesce in pair to

leave it

Plan: Perturb the matrices to make the eigenvalues coalesce — but how J

to pair them?
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The other setting
Everything clearer if we look at the other plot

@ Coalesce one red and one yellow point

@ Red points move towards right, yellow ones towards left
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Moving eigenvalues

Can use eigenvalue perturbation theory to predict (first-order) location of

the unimodular eigenvalues after a perturbation

Theorem

If (\, u) is a simple unimodular eigenpair of A"LA} + Ag + M\A1, an
eigenvalue of A™Y(A} + Ef) + (Ao + Eo) + (A1 + Ey) is given by

u(ANLE] + Eo 4+ AEp)u

A=A—
(= A72A5 + Ap)u

+ O(/| Eo, Exl])

Given a perturbation ansatz

A=Y 65X =01
k

one can choose the §; such that the perturbed eigenvalues are
(approximately) in a specified location (linear least-squares problem)
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Iterative perturbation

] Ai=S6EH, i=0,1 J
k

@ Choose step-size T

@ Compute unimodular eigenvalues

© Choose new desired location at distance 7 in the right direction
© Compute first-order location under each (Eék), El(k))

@ Solve least-squares problem to compute J, that obtain best match
O Repeat
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A,‘ VS. M,'

Problem

Ay = My — M| — MydT + dMydM T
® = MoyM; !

A1 = Ml — @MO

Perturbing A; “unnatural”, since they come from observed M;

Solution work on extended equation

Ml M{ 0 Mo
Ao 0 o+ M

o o of |mS

M
Mo
MY

Mo
My
0

+ A

My O
My O
0 O

o O O

Construct a linear perturbation basis (Eék), El(k)) corresponding to

entrywise perturbations of the M;
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Examples: closed-form estimator
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Figure: Diagonal GARCH, d = 2, p(©) = 0.6, n = 1000
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Examples: closed-form estimator

250 | {00 Closed-form
0o ML

200 |- .

= 150 | -
(0]
S

S 100 -
o
O

0, ............. |

T T T T T

0 5 10 15 20

experiment #

Figure: Diagonal GARCH, d =2, p(©) = 0.6, n = 1000

F. Poloni (U Pisa) Perturbing Matrix Eqns Fun13, Manchester 17 /20



Examples: solvability enforcement
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Figure: VARMA with p(®) = 0.9, p(©) = 0.87, d = 2 (left) or 4 (right),
n = 10000. Blue x = enforcement needed
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Examples: solvability enforcement
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Figure: VARMA with p(®) = 0.9, p(©) = 0.995, d = 2 (left) or 4 (right),
n = 10000. Blue x = enforcement needed
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Possible improvements

@ Work on @ and & at the same time

@ Combine with an iterative ML-like optimization
e.g., GLS (generalized least squares) for GARCH?

@ Spectral factorization with higher polynomial degrees
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Thanks for your attention! J
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