Perturbing Palindromic Matrix Equations to Make Them Solvable

Federico Poloni ${ }^{1}$
Joint work with Tobias Brüll ${ }^{2}$, Giacomo Sbrana ${ }^{3}$, Christian Schröder ${ }^{4}$
${ }^{1} U$ Pisa, Dept of Computer Science
${ }^{2}$ Computer Simulation Technology AG/ TU Berlin alumnus
${ }^{3}$ Rouen Business School, France
${ }^{4}$ TU Berlin, Germany

Advances in Matrix Functions and Matrix Equations
U Manchester, April 2013

VARMA $(1,1)$ models

VARMA $(1,1)$ [Lütkepohl, book '05]

$$
x_{t}-\Phi x_{t-1}=u_{t}-\Theta u_{t-1}
$$

$x_{t}=$ observed variable $\in \mathbb{R}^{d}$
$u_{t}=$ white noise (enough to assume uncorrelated) $\in \mathbb{R}^{d}$
$\Phi, \Theta \in \mathbb{R}^{d \times d}, \rho(\Phi)<1, \rho(\Theta)<1$
Many known models to simulate volatility reduce to $\operatorname{VARMA}(1,1)$:

- $\operatorname{GARCH}(1,1)$
- Multivariate stochastic volatility models

Estimating VARMAs

Problem

Given enough observations $\left(x_{t}\right)$ generated by a VARMA, determine parameters Φ, Θ

A common choice is QML (quasi-maximum-likelihood):
(1) Assume u_{t} Gaussian independent
(2) Given guesses $\hat{\Phi}, \hat{\Theta}$, compute likelihood $\ell(\hat{\Phi}, \hat{\Theta})$ of generating the given time series
(3) Feed $\ell(\cdot, \cdot)$ into a black-box minimization procedure (e.g., Matlab's fminunc)

Problems with QML

(1) Costly: each function evaluation costs $O\left(n d^{3}\right)$, with $n=$ length of time series. Hundreds or thousands required
(2) Black-box: difficult to implement and tweak, and understand what's going on.
(3) No convergence guarantees, non-convex optimization problem in many variables
(9) Hey doc, what if our u_{t} isn't Gaussian independent?

Our attempt

Moment estimator: determine Φ, Θ as a function of the autocovariances

$$
M_{k}=\mathbb{E}\left[x_{t} x_{t+k}^{T}\right]
$$

We will show $(\Phi, \Theta)=f\left(M_{0}, M_{1}, M_{2}\right)$

GMM estimator

(1) Compute sample autocovariances $\hat{M}_{k}=\frac{1}{n} \sum x_{t} x_{t+k}^{T}$
(2) Get $(\hat{\Phi}, \hat{\Theta})=f\left(\hat{M}_{0}, \hat{M}_{1}, \hat{M}_{2}\right)$

- Very fast: working only with $d \times d$ matrices, no dependence on n (after computing moments)
- Good asymptotic properties
- In simulated experiments, not as accurate as QML, but good as initial value / low complexity estimate
Already known for univariate GARCH; generalization requires some linear algebra machinery

Yule-Walker results

The parameter Φ is easy to obtain:
Theorem
$\Phi=M_{k+1} M_{k}^{-1}$ for each $k \geq 1$
Can solve any of these equations, e.g. $\hat{\Phi}=\hat{M}_{2} \hat{M}_{1}^{-1}$
or many of them in the least-squares sense
If you heard about Hankel matrices and time series, that's where they arise

Estimating Θ

Let $r_{t}=x_{t}-\Phi x_{t-1}=u_{t}-\Theta u_{t-1}, Y:=\mathbb{E}\left[u_{t} u_{t}^{T}\right]$

$$
\begin{aligned}
& A_{0}:=\mathbb{E}_{\mathrm{t}}\left[r_{t} r_{t}^{T}\right]=M_{0}-\Phi M_{1}^{T}-M_{1} \Phi^{T}+\Phi M_{0} \Phi^{T}=Y+\Theta Y \Theta^{T} \\
& A_{1}:=\mathbb{E}_{\mathrm{t}}\left[r_{t} r_{t+1}^{T}\right]=M_{1}-\Phi M_{0}=-\Theta Y
\end{aligned}
$$

Blue expressions allow us to compute A_{0}, A_{1}.
Use them + red expressions to decouple equations for $Y, X=\Theta^{T}$

$$
\begin{gather*}
A_{0}=Y+A_{1} Y^{-1} A_{1}^{T}, \quad Y>0 \tag{BARE}\\
A_{1}^{T}+A_{0} X+A_{1} X^{2}=0 \tag{UME}
\end{gather*}
$$

Two related matrix equations

$$
\begin{gather*}
A_{0}=Y+A_{1} Y^{-1} A_{1}^{T}, \quad Y>0 \tag{BARE}\\
A_{1}^{T}+A_{0} X+A_{1} X^{2}=0 \tag{UME}
\end{gather*}
$$

Solve any one of them, then $A_{1}=-X^{T} Y$
(UME) looks more appealing, relation with quadratic eigenproblems However, (BARE) more natural: no "hidden symmetry constraints" [Engwerda et al, '93], [Meini, '02], [Guo et al, '10, '11, '12]

Spectral factorization problem

$$
z^{-1} A_{1}^{T}+A_{0}+z A_{1}=\left(I-z X^{T}\right) Y\left(I-z^{-1} X\right)
$$

Eigenvalue s of $I-z X^{T}$ outside the unit circle, $I-z^{-1} X$ inside

Existence of the solution

Existence and unicity

- Solution exists if $Q(\lambda):=A_{1}^{T} \lambda^{-1}+A_{0}+A_{1} \lambda$ is such that $Q(\lambda)>0$ for each λ on unit circle [Engwerda et al, '93]
- Solution unique if we ask $Y>0, \rho(X)<1$ (as was assumed)

Of course, if the model is well-posed, there must be a solution... But observed data \hat{A}_{0}, \hat{A}_{1} might give unsolvable equations Rather than giving up, perturb them to make the model solvable Similar techniques (for other problems) in [Brüll, Schröder '12], [Alam, Bora, Byers, Overton '11]

Spectral plot

Figure: Eigenvalues of $Q\left(e^{i \omega}\right)$

Figure: Generalized eigenvalues of $Q()$

Red/Yellow: sign characteristic of unimodular eigenvalues
Same thing as upward/downward slope in the graph on the left

Perturbing eigenvalues

Perturbation behaviour: eigenvalues on the unit circle coalesce in pair to leave it

Plan: Perturb the matrices to make the eigenvalues coalesce - but how to pair them?

The other setting

Everything clearer if we look at the other plot

- Coalesce one red and one yellow point
- Red points move towards right, yellow ones towards left

Moving eigenvalues

Can use eigenvalue perturbation theory to predict (first-order) location of the unimodular eigenvalues after a perturbation

Theorem

If (λ, u) is a simple unimodular eigenpair of $\lambda^{-1} A_{1}^{*}+A_{0}+\lambda A_{1}$, an eigenvalue of $\lambda^{-1}\left(A_{1}^{*}+E_{1}^{*}\right)+\left(A_{0}+E_{0}\right)+\lambda\left(A_{1}+E_{1}\right)$ is given by

$$
\tilde{\lambda}=\lambda-\frac{u^{*}\left(\lambda^{-1} E_{1}^{*}+E_{0}+\lambda E_{1}\right) u}{u^{*}\left(-\lambda^{-2} A_{1}^{*}+A_{1}\right) u}+O\left(\left\|E_{0}, E_{1}\right\|\right)
$$

Given a perturbation ansatz

$$
A_{i}=\sum_{k} \delta_{k} E_{i}^{(k)}, \quad i=0,1
$$

one can choose the δ_{k} such that the perturbed eigenvalues are (approximately) in a specified location (linear least-squares problem)

Iterative perturbation

$$
A_{i}=\sum_{k} \delta_{k} E_{i}^{(k)}, \quad i=0,1
$$

(1) Choose step-size τ
(2) Compute unimodular eigenvalues
(3) Choose new desired location at distance τ in the right direction
(9) Compute first-order location under each $\left(E_{0}^{(k)}, E_{1}^{(k)}\right)$
(6) Solve least-squares problem to compute δ_{k} that obtain best match
(0) Repeat
A_{i} vs. M_{i}

Problem

$$
\begin{aligned}
& A_{0}:=M_{0}-\Phi M_{1}^{T}-M_{1} \Phi^{T}+\Phi M_{0} \Phi M^{T} \\
& A_{1}:=M_{1}-\Phi M_{0} \quad \Phi=M_{2} M_{1}^{-1}
\end{aligned}
$$

Perturbing A_{i} "unnatural", since they come from observed M_{i}
Solution work on extended equation

$$
\lambda^{-1}\left[\begin{array}{ccc}
M_{1}^{T} & M_{0}^{T} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
M_{0} & M_{1} & M_{2} \\
M_{1}^{T} & M_{0} & M_{1} \\
M_{2}^{T} & M_{1}^{T} & 0
\end{array}\right]+\lambda\left[\begin{array}{ccc}
M_{1} & 0 & 0 \\
M_{0} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Construct a linear perturbation basis $\left(E_{0}^{(k)}, E_{1}^{(k)}\right)$ corresponding to entrywise perturbations of the M_{i}

Examples: closed-form estimator

- Closed-form
- ML

Figure: Diagonal GARCH, $d=2, \rho(\Theta)=0.6, n=1000$

Examples: closed-form estimator

Figure: Diagonal GARCH, $d=2, \rho(\Theta)=0.6, n=1000$

Examples: solvability enforcement

Figure: VARMA with $\rho(\Phi)=0.9, \rho(\Theta)=0.87, \boldsymbol{d}=2$ (left) or 4 (right), $n=10000$. Blue $\mathrm{x}=$ enforcement needed

Examples: solvability enforcement

Figure: VARMA with $\rho(\Phi)=0.9, \rho(\Theta)=0.995, d=2$ (left) or 4 (right), $n=10000$. Blue $\times=$ enforcement needed

Possible improvements

- Work on Θ and Φ at the same time
- Combine with an iterative ML-like optimization e.g., GLS (generalized least squares) for GARCH?
- Spectral factorization with higher polynomial degrees

Possible improvements

- Work on Θ and Φ at the same time
- Combine with an iterative ML-like optimization e.g., GLS (generalized least squares) for GARCH?
- Spectral factorization with higher polynomial degrees

Thanks for your attention!

