Algorithms for matrix functions and equations

Consuntivo scientifico progetto di ricerca 2013

Federico Poloni ${ }^{1}$
Project participants: D.A. Bini ${ }^{1}$, G. Del Corso ${ }^{1}$, L. Gemignani ${ }^{1}$, B. lannazzo², B. Meini ${ }^{1}$, V. Noferini ${ }^{3}$, L. Robol ${ }^{4}$
${ }^{1} U$ Pisa $\quad{ }^{2} U$ Perugia $\quad{ }^{3} U$ Manchester $\quad{ }^{4}$ Scuola Normale Superiore, Pisa

Convegno GNCS 2014

Montecatini, 19-20 ${ }^{\text {th }}$ February 2014

Why all these together?

Most of the "real-life" matrix equations are (generalized) eigenproblems in disguise:

$$
\begin{aligned}
X B X+X A-D X-C=0 & \Longleftrightarrow\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{l}
I \\
X
\end{array}\right] Y \\
A X^{2}+B X+C=0 & \Longleftrightarrow\left[\begin{array}{cc}
0 & I \\
-C & -B
\end{array}\right]\left[\begin{array}{l}
I \\
X
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & A
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right] Y
\end{aligned}
$$

- Solution of interest \Longleftrightarrow spectrum in a certain region
- How do you ensure correct number of eigenvalues there? Structure
- How do you solve them efficiently? Structure
- How do you "move around" eigenvalues by region and preserve eigenvectors? Matrix functions

Where do they appear?

Riccati-type equations Control theory, modelling (probabilistic+engineering), queuing theory, time series...
Matrix functions Scientific imaging, radar, probability/statistics, delay differential equations
Structured eigenproblems matrix equations, everything that needs to compute roots of polynomials

Entrywise accurate solution of Riccati equations from fluid queues

- Riccati equations appearing in a probability application (fluid queues: model buffers with different input/output rates modeled by Markov chain)
- Improved accuracy of existing algorithms
- Now fully entrywise accurate algorithm: $\frac{\left|\tilde{X}_{i j}-X_{i j}\right|}{X_{i j}} \leq \varepsilon$
- Entrywise accuracy important in probability ("failure rates", entries span several orders of magnitude)
- Error analysis (long and boring)
- New ideas: do the same for quadratic problems/cyclic reduction
- [Nguyen, Poloni]

Estimation of MA time series models

- "Fitting" coefficients of a model from observations
- Looking for something faster than Maximum Likelihood
- Results in a matrix equation problem, or more generally matrix polynomial factorization $A \lambda+B+A^{T} \lambda^{-1}=(I-\lambda X) Y\left(I-\lambda^{-1} X^{T}\right)$
- Applying standard theory to solve it
- How to make the equation solvable when it isn't (observation errors in coefficients?) Structured eigenproblem perturbation
- New ideas: reduce to many scalar problems, reduce \# of simultaneous variables
- [Poloni, Sbrana], [Brüll, Poloni, Sbrana, Schröder]

Rank-structured Riccati

- Algebraic Riccati equation $X B X+X A-D X-C=0$ where A is block-diagonal, other coefficients have 1 small dimension
- Idea: a sort of quadratic block Jacobi/Gauss-Seidel
- Every iteration is a small-scale ARE.
- Asymptotic convergence theory, applicability
- New ideas: use this for eigensolvers
- [Bini, Meini], [Meini]

Matrix roots and Lambert W function

- Compute matrix versions of inverses of functions such as $x \mapsto x^{p}$, $x \mapsto x \exp (x)$
- Main issue: several branches to choose from
- Matrix roots: Schur form + back-substitution
- Strategies to perform back-substitution in \# steps logarithmic in p
- Faster than competing algorithms on practically relevant parameter ranges
- Lambert W function: Newton's method
- Starting point to ensure correct branches
- [lannazzo, Manasse], [lannazzo]

Efficient matrix means

- Matrix geometric mean: minimizer of a certain Riemannian distance on positive definite matrices
- Equivalently, solves nonlinear equation $\sum_{i=1}^{k} \log \left(A_{i}^{-1} X\right)=0$
- Algorithm: "simple" Richardson iteration with special step-size, motivated by local convergence theory
- Good convergence properties, faster in literature
- Other problem: Toeplitz means of Toeplitz matrices
- How to define them? Minimizer of another Riemannian distance
- Richardson-based algorithms; differential geometry motivates step size/preconditioner
- [Bini, Iannazzo], [Bini, Iannazzo, Jeuris, Vandebril]

Linearizations

- Methods to turn a polynomial eigenproblem into a linear one
- Simplest one: (block) companion form. Many variants, often motivated by structure preservation
- Brought other linear algebra topics into the picture to simplify proofs and theory: duality, Wong chains, Bezoutians
- New ideas: apply this to multiparameter eigenproblems / relation to polynomial algebra algos; use semiseparable technology and notation
- [Noferini, Poloni] [Townsend, Noferini, Nakatsukasa], [Del Corso, Poloni]

Semiseparable QZ

- QR algorithms known in quadratic time for special structures (defined by low ranks of special submatrices)
- Key technique: updating "generators" in a linear number of parameters
- QZ more challenging - two rank structures to keep track of
- Developed Semisep-QZ versions for two different structures appearing in (generalized) companion forms, including unitary-plus-rank-1
- Almost-normal matrices: a more general structure: $\left(A^{H}+u v^{T}\right) A=A\left(A^{H}+u v^{T}\right)$
- Developed method to reduce almost-normal A to $Q A Q^{H}$ in a special block tridiagonal form (CMV shape, preserved by QR)
- [Boito,Eidelman,Gemignani] $\times 2$, [Bevilacqua, Del Corso, Gemignani]

Ehrlich-Aberth variants

- EA: simultaneous Newton-like iteration for finding polynomial roots
- Good for badly-scaled problems
- structured version for palindromic polynomials: work on "structured pairs of roots" at the same time
- Use it for eigenvalue computations (without forming determinants explicitly, need only $\frac{p^{\prime}(x)}{p(x)}$)
- Use it for structured eigenvalue computations
- Choice of polynomial basis can give benefits, direction still to explore
- Add all this to state-of-the-art rootfinder MPSolve
- [Bini, Noferini], [Gemignani, Noferini], [Bini, Robol]

Results

Caveat:

- Research doesn't start or stop at grant boundaries
- 1 year short compared to lifetime of a research project, from idea to publication

Anyway, in the project lifetime:

- 8 relevant journal publications $(1 \times$ SIMAX, $1 \times$ NLAA, $3 \times$ LAA, $1 \times$ BIT, $2 \times$ application journals)
- 5 relevant preprints/submitted
- 6 more ongoing ideas that will (hopefully!) lead to one

Expenses

What we used the grant for

- Conferences: Providence (USA), Trieste, Lausanne (Suisse), Cagliari
- Research visits: @C. Schröder, @G. Nguyen

What we didn't use it for

- Summer school for L. Robol (completely financed by organizers)
- Incoming visits (bureaucracy...) :((mostly on other funds, as well as other visits)

Thanks

- My colleagues in the project: Bini, Del Corso, Gemignani, Iannazzo, Meini, Noferini, Robol
- Your attention till this late in the evening
- INDAM/GNCS for this grant!

