When is a system of Sylvester-like matrix equations well posed?

F. De Terán ${ }^{1} \quad$ B. Iannazzo $^{2} \quad$ F. Poloni ${ }^{3} \quad$ L. Robol ${ }^{4}$
${ }^{1} U$ Carlos III Madrid ${ }^{2} \mathrm{U}$ Perugia ${ }^{3} \mathrm{U}$ Pisa ${ }^{4} \mathrm{KU}$ Leuven
Mathematical Colloquium
Osijek, 30 March 2017

The setup

Example

$$
\left\{\begin{array}{l}
A X_{1} B+C X_{2}^{\star} D=E \\
F X_{1}^{\star} G+H X_{4} I=J \\
K X_{3}^{\star} L+M X_{2}^{\star} N=O
\end{array}\right.
$$

- Each equation is in the form

$$
A X_{i}^{\sigma} B+C X_{j}^{\tau} D=E
$$

- $A, B, C, D, E \in \mathbb{C}^{n \times n}$ (n constant along all equations);
- Unknowns $X_{1}, X_{2}, \ldots, X_{m} \in \mathbb{C}^{n \times n}$. Two of them in each equation.
- Symbols $\sigma, \tau \in\{1, \star\}$, where \star is either $*$ (transpose conjugate) or \top (complex transpose).

Where do they arise?

Stability of dynamical systems:
Theorem (Lyapunov stability)
Given any pos.def. Q, the linear continuous-time system $\dot{x}=A x$ is asymptotically stable iff $A^{*} X+X A+Q=0$ has a unique pos.def. solution.

Theorem (Stein stability)

Given any pos.def. Q, the linear discrete-time system $x_{k+1}=A x_{k}$ is asymptotically stable iff $A^{*} X A-X+Q=0$ has a unique pos.def. solution.

Where do they arise? - II

Decoupling systems of equations:

$$
\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right] \rightarrow\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

Is there a change of basis that does this?

$$
\left[\begin{array}{ll}
1 & X \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
A & A X-X B+C \\
0 & B
\end{array}\right] .
$$

(Consider 1×1 case for first solvability conditions)

Where do they arise? - III

Decoupling systems of equations:

$$
\left[\begin{array}{cc}
E & G \\
0 & F
\end{array}\right]^{-1}\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right] \rightarrow\left[\begin{array}{ll}
E & 0 \\
0 & F
\end{array}\right]^{-1}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

Is there a change of basis that does this?

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & X \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
E & G \\
0 & F
\end{array}\right]^{-1}\left[\begin{array}{ll}
I & Y \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
I & Y \\
0 & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]} \\
\\
=\left[\begin{array}{cc}
E & E X-Y F+G \\
0 & F
\end{array}\right]^{-1}\left[\begin{array}{cc}
A & A X-Y B+C \\
0 & B
\end{array}\right] .
\end{gathered}
$$

Where do they arise? - IV

Decoupling systems of equations of the form $M^{-1} M^{\star}$:

$$
\left[\begin{array}{ll}
0 & A \\
B & C
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & B^{\star} \\
A^{\star} & C^{\star}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & B^{\star} \\
A^{\star} & 0
\end{array}\right]
$$

Is there a change of basis that does this?

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
0 & A \\
B & C
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & 0 \\
X^{\star} & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & 0 \\
X^{\star} & 1
\end{array}\right]\left[\begin{array}{cc}
0 & B^{\star} \\
A^{\star} & C^{\star}
\end{array}\right]\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]} \\
=\left[\begin{array}{ll}
0 & A \\
B & X^{\star} A+B X+C
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & B^{\star} \\
A^{\star} & \left(X^{\star} A+B X+C\right)^{\star}
\end{array}\right]
\end{gathered}
$$

Vectorization

If $\star=T$, it's a linear system: vectorize.
Example

$$
\left\{\begin{array}{l}
A X_{1} B+C X_{2}^{\top} D=E \\
F X_{2}^{\top} G+H X_{1}^{\top} I=J
\end{array} \Longleftrightarrow\left[\begin{array}{cc}
B^{\top} \otimes A & \left(D^{\top} \otimes C\right) \Pi \\
\left(G^{\top} \otimes F\right) \Pi & \left(I^{\top} \otimes H\right) \Pi
\end{array}\right]\left[\begin{array}{l}
\operatorname{vec} X_{1} \\
\operatorname{vec} X_{2}
\end{array}\right]=\left[\begin{array}{l}
\operatorname{vec} E \\
\operatorname{vec} J
\end{array}\right]\right.
$$

Otherwise, \mathbb{R}-linear: divide real and imaginary parts and vectorize.

Example

$$
A \bar{X} B=E \Longleftrightarrow\left[\begin{array}{l}
\Re B^{\top} \otimes \Re A-\Im B^{\top} \otimes \Im A \\
\Im B^{\top} \otimes \Re A+\Re B^{\top} \otimes \Re A+\Re B^{\top} \otimes \Im A \\
\circlearrowleft \Im A \\
\Im B^{\top} \otimes \Im A-\Re B^{\top} \otimes \Re A
\end{array}\right]\left[\begin{array}{l}
\operatorname{vec} \Re X \\
\operatorname{vec} \Im X
\end{array}\right]=\left[\begin{array}{l}
\operatorname{vec} \Re E \\
\operatorname{vec} \Im E
\end{array}\right]
$$

Well-posedness

System of generalized \star-Sylvester equations \Longleftrightarrow huge $M x=v$.

Main question

When is M square invertible? i.e.,
When is the system uniquely solvable for each RHS?
And how can one compute the solution?

Meaningful case for numerical practice, because it means the answer is stable under small perturbations.

First constraint: number of equations $=$ number of unknowns.

Roth-style conditions

Easy answer: the condition is $\operatorname{det} M \neq 0$.
Not satisfying: M is at least $r n^{2} \times r n^{2}$.
We want conditions based on matrices and pencils of size $O(r n)$. For instance:

Theorem [Classical]
$A X-X D=E$ well-posed iff A and D have no common eigenvalues.

Theorem [De Terán, lannazzo, LAA '16]
$A X B+C X^{\star} D=E$ well-posed iff $Q(\lambda)=\left[\begin{array}{cc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$ has no pair of eigenvalues λ_{1}, λ_{2} such that $\lambda_{1} \lambda_{2}^{\star}=1$.
Exception: if $\star=T$, one copy of 1 and -1 allowed.

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients
Theorem [Schur]
Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients
Theorem [Schur]
Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i j} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\begin{gathered}
\left.\left[\begin{array}{l|l|}
\hline & \\
& \\
\hline & \\
& \\
\hline & \\
\hline & \\
\hline
\end{array}\right]-\begin{array}{l|l|l}
\hline & & \\
\hline & \\
\hline
\end{array}\right] \\
\\
\hat{A}_{i j} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
\end{gathered}
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i j} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i i} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i j} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i j} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i i} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i i} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

One equation: the Bartels-Stewart algorithm
[Bartels-Stewart '72]
Step 1: reduce to triangular coefficients

Theorem [Schur]

Let $A \in \mathbb{C}^{n \times n}$. There is a unitary Q such that $\hat{A}=Q^{*} A Q$ is upper (lower) triangular.

$$
\begin{aligned}
& A X-X D=E \longrightarrow Q_{A}^{*} A X Q_{D}-Q_{A}^{*} D Q_{D}=Q_{A}^{*} E Q_{D} \\
& \longrightarrow \hat{A} \hat{X}-\hat{X} \hat{D}=\hat{E}, \quad \hat{X}=Q_{A}^{*} X Q_{D}, \hat{E}=Q_{A}^{*} E Q_{D}
\end{aligned}
$$

Step 2: back-substitution

$$
\hat{A}_{i i} \hat{X}_{i j}-\hat{X}_{i j} \hat{D}_{j j}=\hat{E}_{i j}-\ldots
$$

Solvability conditions

Equation for $X_{i j}$ uniquely solvable iff $\hat{A}_{i i}-\hat{D}_{j j} \neq 0$
Theorem [Bartels-Stewart '72]
$A X-X D=C$ well-posed iff A and D have no common eigenvalues.
\ldots and a $\mathcal{O}\left(n^{3}\right)$ algorithm to solve it.
Now, back to systems:

Example

$$
\left\{\begin{array}{l}
A X_{1} B+C X_{2}^{\star} D=E \\
F X_{1}^{\star} G+H X_{4} I=J \\
K X_{3}^{\star} L+M X_{2}^{\star} N=O
\end{array}\right.
$$

Eliminate single-use variables

Suppose X_{1} appears only in one equation

$$
A X_{1}^{\sigma} B+C X_{j}^{\tau} D=E
$$

A singular: Not well posed: if $A u=0$, we can add multiples of $u u^{\star}$ to X_{1}.
B singular: Not well posed, similarly.
A, B invertible: determine uniqueness for the remaining equations, then solve for X_{1}.

So we can assume each variable appears at least exactly two times.

Reduce to cycles

Example

$$
\left\{\begin{array} { l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \left\{\begin{array}{r}
\\
Y_{1}=X_{1},
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \left\{\left\{\begin{array} { l }
{ B ^ { \star } Y _ { 1 } A ^ { \star } + D ^ { \star } X _ { 4 } ^ { \star } C ^ { \star } = 0 } \\
{ }
\end{array} \left\{\begin{array}{l}
\\
Y_{1}=X_{1},
\end{array}\right.\right.\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
\\
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star},
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
\\
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star},
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l }
{ A X _ { \star } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \quad \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
K Y_{2} L+I X_{5} J=0 \\
\\
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star},
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
K Y_{2} L+I Y_{3} J=0 \\
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \left\{\begin{array} { l }
{ B ^ { \star } Y _ { 1 } A ^ { \star } + D ^ { \star } Y _ { 2 } C ^ { \star } = 0 } \\
{ K Y _ { 2 } L + I Y _ { 3 } J = 0 } \\
{ }
\end{array} \left\{\begin{array}{l}
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star}, Y_{3}=X_{5}
\end{array}\right.\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \quad \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
K Y_{2} L+I Y_{3} J=0 \\
P^{*} Y_{3} O^{*}+N^{*} X_{1}^{\star} M^{*}=0 \\
\\
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star}, Y_{3}=X_{5}
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \quad \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
K Y_{2} L+I Y_{3} J=0 \\
P^{*} Y_{3} O^{*}+N^{*} Y_{1}^{\star} M^{*}=0 \\
\\
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star}, Y_{3}=X_{5}
\end{array}\right.\right.
$$

Reduce to cycles

Example

$$
\left\{\begin{array} { l l }
{ A X _ { 1 } ^ { \star } B + C X _ { 4 } D = 0 } \\
{ E X _ { 2 } ^ { \star } F + G X _ { 3 } H = 0 } \\
{ I X _ { 5 } J + K X _ { 4 } ^ { \star } L = 0 } \\
{ M X _ { 1 } N + O X _ { 5 } ^ { \star } P = 0 } \\
{ Q X _ { 3 } ^ { \star } R + S X _ { 2 } T = 0 }
\end{array} \quad \left\{\begin{array}{l}
B^{\star} Y_{1} A^{\star}+D^{\star} Y_{2} C^{\star}=0 \\
K Y_{2} L+I Y_{3} J=0 \\
P^{\star} Y_{3} O^{*}+N^{*} Y_{1}^{\star} M^{*}=0 \\
E X_{2}^{\star} F+G X_{3} H=0 \\
Q X_{3}^{\star} R+S X_{2} T=0 \\
\\
Y_{1}=X_{1}, Y_{2}=X_{4}^{\star}, Y_{3}=X_{5}
\end{array}\right.\right.
$$

Reduction

Theorem
A Sylvester-like system can be reduced to several disjoint 'cyclic' systems each with at most one nontrivial $\sigma \in\{1, \star\}$.

$$
\left\{\begin{array}{l}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=0 \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=0 \\
\quad \vdots \\
A_{r-1} Y_{r-1} B_{r-1}-C_{r-1} Y_{r} D_{r-1}=0, \\
A_{r} Y_{r} B_{r}-C_{r} Y_{1}^{\sigma} D_{r}=0
\end{array}\right.
$$

$\sigma=1$: periodic Sylvester equations

If $\sigma=1$, solved in [Byers-Rhee '95].
Idea: generalized Bartels-Stewart algorithm.
Step 1: triangulation
Make A_{i}, C_{i} upper triangular and B_{i}, D_{i} lower triangular.
Theorem (Periodic Schur decomposition, [Bojanczyk-Golub-Van Dooren '92])
Let $A_{1}, A_{2}, \ldots, A_{r}, C_{1}, C_{2}, \ldots, C_{r} \in \mathbb{C}^{n \times n}$. There exist unitary matrices
$Q_{1}, Q_{2}, \ldots, Q_{r}, Z_{1}, Z_{2}, \ldots, Z_{r} \in \mathbb{C}^{n \times n}$ such that

$$
\begin{aligned}
& Q_{1} A_{1} Z_{1}, Q_{2} A_{2} Z_{2}, \ldots, Q_{r} A_{r} Z_{r}, \\
& Q_{1} C_{1} Z_{2}, Q_{2} C_{2} Z_{3}, \ldots, Q_{r} C_{r} Z_{1}
\end{aligned}
$$

are all upper (or: lower) triangular.

The change of bases

Or: insert orthogonal transformations in $P=C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}$ to make each factor upper triangular:

$$
\underbrace{Z_{1}^{*} C_{r}^{-1} Q_{r}^{*}}_{\hat{C}_{r}^{-1}} \underbrace{Q_{r} A_{r} Z_{r}}_{\hat{A}_{r}} \underbrace{Z_{r}^{*} C_{r-1}^{-1} Q_{r-1}^{*}}_{\hat{C}_{r-1}^{-1}} \underbrace{Q_{r-1} A_{r-1} Z_{r-1}}_{\hat{A}_{r-1}} \cdots \underbrace{Z_{2}^{*} C_{1}^{-1} Q_{1}^{*}}_{\hat{C}_{1}^{-1}} \underbrace{Q_{1} A_{1} Z_{1}}_{\hat{A}_{1}}
$$

The eigenvalues of P are $\lambda_{i}=\frac{\left(\hat{A}_{r}\right)_{i i}\left(\hat{A}_{r-1}\right)_{i j} \cdots\left(\hat{A}_{1}\right)_{i i}}{\left(\hat{C}_{r}\right)_{i i}\left(\hat{C}_{r-1}\right)_{i i} \cdots\left(\hat{C}_{1}\right)_{i i}}, i=1,2, \ldots, n$.
We can do this formally even if some C_{k} are $\operatorname{singular}\left(\lambda_{i}\right.$ may be ∞).
Omitted in this talk: $\lambda_{i}=\frac{0}{0}$, singular formal product. (Spoiler: it's never well-posed.)

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{n n}\left(B_{1}\right)_{n n} & -\left(C_{1}\right)_{n n}\left(D_{1}\right)_{n n} & & \\
& \left(A_{2}\right)_{n n}\left(B_{2}\right)_{n n} & -\left(C_{2}\right)_{n n}\left(D_{2}\right)_{n n} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{n n}\left(D_{r}\right)_{n n} & & & \left(A_{r}\right)_{n n}\left(B_{r}\right)_{n n}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{n n} \\
\left(Y_{2}\right)_{n n} \\
\vdots \\
\left(Y_{r}\right)_{n n}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{n n}\left(B_{1}\right)_{n n} \cdots\left(A_{r}\right)_{n n}\left(B_{r}\right)_{n n} \neq\left(C_{1}\right)_{n n}\left(D_{1}\right)_{n n} \cdots\left(C_{r}\right)_{n n}\left(D_{r}\right)_{n n}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & \ddots & \ddots \\
& & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Step 2: the back-substitution

Cyclic bidiagonal system

$$
\left[\begin{array}{cccc}
\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} & -\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} & & \\
& \left(A_{2}\right)_{i i}\left(B_{2}\right)_{j j} & -\left(C_{2}\right)_{i i}\left(D_{2}\right)_{j j} & \\
& & \ddots & \ddots \\
-\left(C_{r}\right)_{j j}\left(D_{r}\right)_{j j} & & & \left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j}
\end{array}\right]\left[\begin{array}{c}
\left(Y_{1}\right)_{i j} \\
\left(Y_{2}\right)_{i j} \\
\vdots \\
\left(Y_{r}\right)_{i j}
\end{array}\right]=\text { R.H.S. }
$$

Invertible if $\left(A_{1}\right)_{i i}\left(B_{1}\right)_{j j} \cdots\left(A_{r}\right)_{i i}\left(B_{r}\right)_{j j} \neq\left(C_{1}\right)_{i i}\left(D_{1}\right)_{j j} \cdots\left(C_{r}\right)_{i i}\left(D_{r}\right)_{j j}$

Well-posedness of systems with $\sigma=1$

Theorem [Byers-Rhee '95]

The cyclic system

$$
\left\{\begin{array}{l}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=0 \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=0 \\
\quad \vdots \\
A_{r-1} Y_{r-1} B_{r-1}-C_{r-1} Y_{r} D_{r-1}=0 \\
A_{r} Y_{r} B_{r}-C_{r} Y_{1} D_{r}=0
\end{array}\right.
$$

is well posed iff the formal products

$$
\begin{aligned}
& R=C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1} \\
& S=D_{r} B_{r}^{-1} D_{r-1} B_{r-1}^{-1} \cdots D_{1} B_{1}^{-1}
\end{aligned}
$$

have no common eigenvalues.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

$\sigma=\star$: periodic \star-Sylvester systems

Step 1: compute periodic Schur form of

$$
S^{-\star} R=D_{r}^{-\star} B_{r}^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_{1}^{-\star} B_{1}^{\star} C_{r}^{-1} A_{r} C_{r-1}^{-1} A_{r-1} \cdots C_{1}^{-1} A_{1}
$$

Step 2: block back-substitution: solve a $2 r \times 2 r$ system for

$$
\left(Y_{1}\right)_{i j},\left(Y_{2}\right)_{i j}, \ldots\left(Y_{r}\right)_{i j},\left(Y_{1}\right)_{j i},\left(Y_{2}\right)_{j i}, \ldots,\left(Y_{r}\right)_{j i}
$$

simultaneously.

The well-posedness conditions

Reciprocal-free conditions:
Theorem
Let $\lambda_{i}, i=1,2, \ldots, n$ be the eigenvalues of the formal matrix product $S^{-\star} R$. A cyclic \star-Sylvester system is well-posed iff

$$
\begin{array}{rlll}
\begin{array}{|c|c}
\star & \lambda_{i} \overline{\lambda_{j}} \neq 1 \forall i, j: \\
& \\
\lambda_{i} \overline{\lambda_{i}} \neq 1 & \forall i
\end{array} & \\
\lambda_{i} \overline{\lambda_{j}} \neq 1 & \forall i \neq j & \text { (from the diagonal blocks) }
\end{array}
$$

$$
\star=\top: \lambda_{i} \lambda_{j} \neq 1 \forall i, j, \text { but } \lambda=-1 \text { may appear once: }
$$

$$
\begin{array}{rll}
\lambda_{i} \neq 1 & \forall i & \text { (from the diagonal blocks) } \\
\lambda_{i} \lambda_{j} \neq 1 & \forall i \neq j & \text { (from the off-diagonal blocks) }
\end{array}
$$

Another approach: duplicate the system

Example

$$
\begin{aligned}
& A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=E_{1} \\
& A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=E_{2} \\
& A_{3} Y_{3} B_{3}-C_{3} Y_{1}^{*} D_{3}=E_{3}
\end{aligned}
$$

Another approach: duplicate the system

Example

$$
\begin{array}{ll}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=E_{1} & B_{1}^{*} Y_{1}^{*} A_{1}^{*}-D_{1}^{*} Y_{2}^{*} C_{1}^{*}=E_{1}^{*} \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=E_{2} & B_{2}^{*} Y_{2}^{*} A_{2}^{*}-D_{2}^{*} Y_{3}^{*} C_{2}^{*}=E_{2}^{*} \\
A_{3} Y_{3} B_{3}-C_{3} Y_{1}^{*} D_{3}=E_{3} & B_{3}^{*} Y_{3}^{*} A_{3}^{*}-D_{3}^{*} Y_{1} C_{3}^{*}=E_{3}^{*}
\end{array}
$$

Another approach: duplicate the system

Example

$$
\begin{array}{ll}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=E_{1} & B_{1}^{*} Z_{1} A_{1}^{*}-D_{1}^{*} Z_{2} C_{1}^{*}=E_{1}^{*} \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=E_{2} & B_{2}^{*} Z_{2} A_{2}^{*}-D_{2}^{*} Z_{3} C_{2}^{*}=E_{2}^{*} \\
A_{3} Y_{3} B_{3}-C_{3} Z_{1} D_{3}=E_{3} & B_{3}^{*} Z_{3} A_{3}^{*}-D_{3}^{*} Y_{1} C_{3}^{*}=E_{3}^{*}
\end{array}
$$

Another approach: duplicate the system

Example

$$
\begin{array}{ll}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=E_{1} & B_{1}^{*} Z_{1} A_{1}^{*}-D_{1}^{*} Z_{2} C_{1}^{*}=E_{1}^{*} \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=E_{2} & B_{2}^{*} Z_{2} A_{2}^{*}-D_{2}^{*} Z_{3} C_{2}^{*}=E_{2}^{*} \\
A_{3} Y_{3} B_{3}-C_{3} Z_{1} D_{3}=E_{3} & B_{3}^{*} Z_{3} A_{3}^{*}-D_{3}^{*} Y_{1} C_{3}^{*}=E_{3}^{*}
\end{array}
$$

Lemma (only for $\star=*$)

The 'duplicated' Sylvester system has a unique solution iff the original *-Sylvester system has unique solution.

Solvability condition for the duplicated system: $S^{-*} R$ and $R^{-*} S$ have no common eigenvalues.
Gives immediately the well-posedness condition $\lambda_{i} \overline{\lambda_{j}} \neq 1 \forall i, j$.

The duplication lemma

Lemma (only for $\star=*$)

The 'duplicated' Sylvester system has a unique solution iff the original *-Sylvester system has unique solution.

Nontrivial part: we need to prove that if

$$
\begin{array}{ll}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=0 & B_{1}^{*} Z_{1} A_{1}^{*}-D_{1}^{*} Z_{2} C_{1}^{*}=0 \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=0 & B_{2}^{*} Z_{2} A_{2}^{*}-D_{2}^{*} Z_{3} C_{2}^{*}=0 \\
A_{3} Y_{3} B_{3}-C_{3} Z_{1} D_{3}=0 & B_{3}^{*} Z_{3} A_{3}^{*}-D_{3}^{*} Y_{1} C_{3}^{*}=0
\end{array}
$$

has a nonzero solution, then it has one with property $(*): Z_{i}=Y_{i}^{*} \forall i$.
$\left(Z_{1}^{*}, Z_{2}^{*}, Z_{3}^{*}, Y_{1}^{*}, Y_{2}^{*}, Y_{3}^{*}\right)$ is another solution.
By linearity, $\left(Y_{1}+Z_{1}^{*}, Y_{2}+Z_{2}^{*}, Y_{3}+Z_{3}^{*}, Z_{1}+Y_{1}^{*}, Z_{2}+Y_{2}^{*}, Z_{3}+Y_{3}^{*}\right)$ is a solution, and has property $(*)$.

The duplication lemma

Lemma (only for $\star=*$)

The 'duplicated' Sylvester system has a unique solution iff the original *-Sylvester system has unique solution.

Nontrivial part: we need to prove that if

$$
\begin{array}{ll}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=0 & B_{1}^{*} Z_{1} A_{1}^{*}-D_{1}^{*} Z_{2} C_{1}^{*}=0 \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=0 & B_{2}^{*} Z_{2} A_{2}^{*}-D_{2}^{*} Z_{3} C_{2}^{*}=0 \\
A_{3} Y_{3} B_{3}-C_{3} Z_{1} D_{3}=0 & B_{3}^{*} Z_{3} A_{3}^{*}-D_{3}^{*} Y_{1} C_{3}^{*}=0
\end{array}
$$

has a nonzero solution, then it has one with property $(*): Z_{i}=Y_{i}^{*} \forall i$.
$\left(Z_{1}^{*}, Z_{2}^{*}, Z_{3}^{*}, Y_{1}^{*}, Y_{2}^{*}, Y_{3}^{*}\right)$ is another solution.
By linearity, $\left(Y_{1}+Z_{1}^{*}, Y_{2}+Z_{2}^{*}, Y_{3}+Z_{3}^{*}, Z_{1}+Y_{1}^{*}, Z_{2}+Y_{2}^{*}, Z_{3}+Y_{3}^{*}\right)$ is a solution, and has property $(*)$. But it might be zero!

The duplication lemma

Lemma (only for $\star=*$)

The 'duplicated' Sylvester system has a unique solution iff the original *-Sylvester system has unique solution.

Nontrivial part: we need to prove that if

$$
\begin{array}{ll}
A_{1} Y_{1} B_{1}-C_{1} Y_{2} D_{1}=0 & B_{1}^{*} Z_{1} A_{1}^{*}-D_{1}^{*} Z_{2} C_{1}^{*}=0 \\
A_{2} Y_{2} B_{2}-C_{2} Y_{3} D_{2}=0 & B_{2}^{*} Z_{2} A_{2}^{*}-D_{2}^{*} Z_{3} C_{2}^{*}=0 \\
A_{3} Y_{3} B_{3}-C_{3} Z_{1} D_{3}=0 & B_{3}^{*} Z_{3} A_{3}^{*}-D_{3}^{*} Y_{1} C_{3}^{*}=0
\end{array}
$$

has a nonzero solution, then it has one with property $(*): Z_{i}=Y_{i}^{*} \forall i$.
$\left(Z_{1}^{*}, Z_{2}^{*}, Z_{3}^{*}, Y_{1}^{*}, Y_{2}^{*}, Y_{3}^{*}\right)$ is another solution.
By linearity, $\left(Y_{1}+Z_{1}^{*}, Y_{2}+Z_{2}^{*}, Y_{3}+Z_{3}^{*}, Z_{1}+Y_{1}^{*}, Z_{2}+Y_{2}^{*}, Z_{3}+Y_{3}^{*}\right)$ is a solution, and has property $(*)$. But it might be zero!
Let's try again: By linearity,
$\left(i\left(Y_{1}-Z_{1}^{*}\right), i\left(Y_{2}-Z_{2}^{*}\right), i\left(Y_{3}-Z_{3}^{*}\right), i\left(Z_{1}-Y_{1}^{*}\right), i\left(Z_{2}-Y_{2}^{*}\right), i\left(Z_{3}-Y_{3}^{*}\right)\right)$ is
a solution, and has property $(*)$.

Duplication lemma - counterexample

We needed the fact that $(a X)^{*}=\bar{a} X^{*}$. For T, it doesn't work.

Counterexample

$$
\begin{array}{ll}
2 y+2 y=0 & \text { has unique solution, } \\
\begin{cases}2 y+2 z=0 & \text { does not. } \\
2 z+2 y=0 & \end{cases}
\end{array}
$$

Recap

- Well-posedness of \star-Sylvester systems reduced to cyclic case.
- Depends only on eigenvalues of certain formal products.
- Bartels-Stewart-like algorithm (non-structurally backward stable).
- Duplication algorithm $(\star=*)$ (non-structurally backward stable).
- Same ideas work for systems with mixed T, $*$ and - symbols.
- More than two terms per equation: more involved already for $r=1$.
- Non-square case: more involved already for $r=1$, see [De Terán, lannazzo, P, Robol, Arxiv '16].

The non-square case, $r=1$

Theorem ([De Terán, lannazzo, Poloni, Robol '16 Arxiv])
$A X B+C X^{\star} D=E$ well-posed iff the following conditions hold:

- Either $(A$ and $B)$ or (C and D) are square
- The smaller of these two square coefficients is invertible
- $\mathcal{Q}(\lambda)=\left[\begin{array}{cc}\lambda D^{*} & B^{*} \\ A & \lambda C\end{array}\right]$ is regular with 'reciprocal-free' eigenvalues.
$\mathcal{Q}(\lambda)$ 'replaces' $D^{-*} B^{*} C^{-1} A$ (tricky to define: [Granat Kågström Kressner '07]).
Eigenvalues alone not sufficient to determine well-posedness:
Counterexample

$$
\mathcal{Q}_{1}(\lambda)=\left[\begin{array}{cc|c}
\lambda & 0 & 0 \\
\hline 1 & 0 & \lambda \\
0 & 1 & 0
\end{array}\right], \quad \mathcal{Q}_{2}(\lambda)=\left[\begin{array}{cc|c}
\lambda & 0 & 1 \\
\hline 0 & 0 & \lambda \\
0 & 1 & 0
\end{array}\right]
$$

Why only two terms?

If we can solve systems with 3 terms, we can solve equations with arbitrarily many, by adding variables.

Example

$$
\begin{aligned}
& A X B+C X D+E X F+G X H+I X J+K X L=M \\
& \downarrow \\
& A X B+C X D+Y=0, \\
& E X F+G X H+Z=0, \\
& I X J+K X L+W=0, \\
& Y+Z+W=M .
\end{aligned}
$$

Related to a big open problem (what is the complexity $\mathcal{O}\left(n^{\tau}\right)$ of matrix multiplication?)

Thanks for your attention! Questions?

