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Pagerank extensions

Pagerank [Page '98]

Input: transition probabilities P = P[i — j], ‘personalization vector' v.
Output: ‘importance’ score x; of each node

x=aPx+(1-a)v, 1Tx=1.

Multilinear Pagerank [Gleich-Lim-Yu '15]

Input: two-step transition probabilities Py = P[i — j — k],
‘personalization vector’ v.
Output: ‘importance’ score x; of each node

n
x=a ) Ppxxi+(1-a)v, 1'x =1.
ij=1

(Not just a 2"d-order Markov model: that would rank pairs of nodes, Xj).
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Back to simpler models

A toy problem

A cell splits into two identical ones with probability p, or dies without
reproducing with probability 1 — p. Starting from a single cell, what is the
probability that the whole colony eventually becomes extinct?
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Back to simpler models

A toy problem

A cell splits into two identical ones with probability p, or dies without
reproducing with probability 1 — p. Starting from a single cell, what is the
probability that the whole colony eventually becomes extinct?

dies immediately splits in two, and they both get extinct

x=(1-p) + px?

The extinction probability x is a solution of this equation — but which one?
x =1 or the other?
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Looking at the whole story

x(h) = Plextinction within h generations] satisfies
X0 =0, XM = (1 - p)+ p(x(M)2.

Easy to show that the sequence x(9) < x(1) < x(2) < .. converges to the
smaller solution of x = (1 — p) + px2.

Answer to the riddle

1—p p > 1
The colony dies out with probability ¢ P f
1 p<s3.

What does this simple problem tell us about matrices and tensors?
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A vector version

Now we have cells of n types:

Py = Plcell of type k splits into i and j],
vk = P|cell of type k dies without offspring] =1 — Z Pijk,
ij
xx = P[colony starting from one type-k cell dies out].

n
X = Z Pij-xixj + v
ij=1

[Kolmogorov 1940s, Etessami-Yannakakis '05, Bean-Kontoleon-Taylor '08]
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Quadratic vector equations

n
x= Y Pjixixj+v *)
ij=1

Many properties are similar to those of the scalar version:
@ x =1 is a solution.

@ The corresponding fixed-point equation converges monotonically
(starting from x(©) = 0).

@ The extinction probabilities are given by its limit point x*. Every
other solution of (*) is entrywise larger than x* (minimal solution).

@ Many other fixed-point recurrences (e.g., Newton's method,
Gauss-Seidel-like variants. .. ) converge monotonically to x* as well.

[Hautphenne-Latouche-Remiche '11, Etessami-Stewart-Yannakakis '12, P "13]
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Numerical experiments
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Figure: CPU time for Newton's method on a parameter-dependent problem
[Bean-Kontoleon-Taylor '08, Ex. 1]; lower=better
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Critical problems
Why the spike? Minimal solution x* = 1 for that parameter value.

Two very close solutions: double = trouble.
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Critical problems

Why the spike? Minimal solution x* = 1 for that parameter value.
Two very close solutions: double = trouble.

Idea

Is it possible to deflate the known solution x = 17
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Critical problems

Why the spike? Minimal solution x* ~ 1 for that parameter value
Two very close solutions: double = trouble.

Idea

Is it possible to deflate the known solution x = 17

Yes! (somehow) Let y =1 — x, survival probability. Eqn becomes

y =Hyy, (Hy)ik = Z Pijk + Pjik — Pjiky;
J

y = Perron eigenvector of the nonnegative matrix H, .
Perron iteration [Meini-P '11], [Bini-Meini-P '12]
o y(k) = Perron (maximal) eigenvector of Hy -y

o Normalize y(k) (st. x=1-— ay®) approximate solution of the eqn).
o lterate.
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Numerical experiments
1073

—— Newton
—— Perron iteration
— Perron (Newton variant)
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Figure: CPU times on a parameter-dependent problem [Bean-Kontoleon-Taylor '08,
Ex. 1]; lower=better
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Back to Multilinear Pagerank

Multilinear Pagerank [Gleich-Lim-Yu '15]

Input: two-step transition probabilities Py = P[i — j — k],
‘personalization vector’ v.
Output: ‘importance’ score x; of each node

n
X=a« Z Pi-xixi + (1 — a)v, 1'x=1.
ij=1

(Not just a 2"d-order Markov model: that would rank pairs of nodes, Xj).

Very similar equation. Main differences:

@ 1 no longer a solution;

@ We seek a stochastic solution, which is not necessarily minimal.
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Structure of the solutions

n
gx)=a Z Pjj.xixj + (1 — a)v
ij=1

has predictable behaviour on the ‘mass’ of x: if 1"x = w, then
17g(x) = aw? + (1 —a).

Consequence: every fixed-point x has 1Tx =1 or 1Tx = =2

o
Theorem
Consider the iteration

o Ifa < % x(K) — x* the unique minimal solution with 1T x*

o If > % x(K) —5 x*, the unique minimal solution with 17 x*

There may be several solutions x > x* with 1"x=1.

Uniqueness (or not) of stochastic solutions also in [Gleich-Lim-Yu '15].
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Numerical experiments
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Figure: CPU time for Newton's method on a parameter-dependent multilinear
pagerank problem [Gleich-Lim-Yu '5, Ex. R6_5|; lower=better.
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Large and small o

@ The good When o < % there is a unique stochastic solution, and
many fixed point iterations (e.g. Newton's method, Gauss-Seidel-like
variants. ..) converge to it monotonically.

@ The bad When o > % there may be multiple stochastic solutions, and
convergence may be problematic — even if we enforce 17 x(K) = 1.
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Large and small o

@ The good When a < % there is a unique stochastic solution, and
many fixed point iterations (e.g. Newton's method, Gauss-Seidel-like
variants. .. ) converge to it monotonically.

@ The bad When o > % there may be multiple stochastic solutions, and
convergence may be problematic — even if we enforce 17 x(K) = 1.

@ The ugly Perron-based iterations can be used for the bad case a > %:

» Compute minimal (sub-stochastic) solution x*;

» Change variable y = x — x*;

> Interpret resulting equation as y = H,y;

» Fixed-point iteration: y(¥) = Perron eigenvector of H, -1 (or variants)

(Another algorithm involving Perron vectors is in [Benson-Gleich-Lim '17].)
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Our goal

[Gleich-Lim-Yu '15] contains 29 small-size benchmark problems
(n€{3,4,6}), some of them with difficult convergence.

The best methods there (newton and innout) can solve 23 and 26 of
them, respectively.

Goal: develop a numerical method that can reliably solve all of them (in a
reasonable number of iterations).

Example (R6_3, [Gleich-Lim-Yu '15])
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Improvements

Improvement 1: use Newton's method on y — pvec(H, ) = 0, where pvec is
the map that computes the Perron vector of a matrix.

An expression for the Jacobian can be found using eigenvector derivatives.

Theorem [Meini-P '17]
The Jacobian of the map w = pvec(H,) is

J=a(wl’ — (I - H, +wl")™! Z P.j.wj)
J

(similar to [Bini-Meini-P '11] for the extinction probability problem.)
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Improvements

Improvement 2 Use homotopy continuation techniques: first solve the
problem for an ‘easy’ «, then increase its value slowly.

Theorem [Meini-P '17]
Let x, be the solution vector for a certain value of o € (0,1). Then,

1
Xorh =X+ | 1= a(d_ Py + Pj) (v =3 Pi(xa)i(xa)s) b+ O(2).

J

Step-size heuristic: estimate the neglected second-order term %, and use
it to choose the next step size.
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Numerical results
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Figure: Performance profile for the 29 examples with oo = 0.99
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Numerical results
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Figure: Zoomed performance profile for the 29 examples with o = 0.99
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Conclusions

@ More understanding for multilinear pagerank problems — from
analogy with population models.

New numerical strategies: Perron-based methods, continuation.

Can handle all benchmark problems successfully.
TO-DO: test at real-world scale.
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Conclusions

@ More understanding for multilinear pagerank problems — from
analogy with population models.

New numerical strategies: Perron-based methods, continuation.

Can handle all benchmark problems successfully.
TO-DO: test at real-world scale.

Thanks for your attention!
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