Quadratic Vector Equations and Multilinear Pagerank

Federico Poloni
Joint work with B. Meini

University of Pisa

Networks: from Matrix Functions to Quantum Physics Oxford, August 2017

Pagerank extensions

Pagerank [Page '98]

Input: transition probabilities $P_{i j}=P[i \rightarrow j]$, 'personalization vector' v.
Output: 'importance' score x_{i} of each node

$$
x=\alpha P x+(1-\alpha) v, \quad \mathbf{1}^{\top} x=1
$$

Multilinear Pagerank [Gleich-Lim-Yu '15]

Input: two-step transition probabilities $P_{i j k}=P[i \rightarrow j \rightarrow k]$, 'personalization vector' v.
Output: 'importance' score x_{i} of each node

$$
x=\alpha \sum_{i, j=1}^{n} P_{i j:} x_{i} x_{j}+(1-\alpha) v, \quad \mathbf{1}^{\top} x=1
$$

(Not just a $2^{\text {nd }}$-order Markov model: that would rank pairs of nodes, $X_{i j}$).

Back to simpler models

A toy problem

A cell splits into two identical ones with probability p, or dies without reproducing with probability $1-p$. Starting from a single cell, what is the probability that the whole colony eventually becomes extinct?

Back to simpler models

A toy problem

A cell splits into two identical ones with probability p, or dies without reproducing with probability $1-p$. Starting from a single cell, what is the probability that the whole colony eventually becomes extinct?
dies immediately
splits in two, and they both get extinct

$$
x=(1-p)+p x^{2}
$$

The extinction probability x is a solution of this equation - but which one? $x=1$ or the other?

Looking at the whole story

$x^{(h)}=P[$ extinction within h generations $]$ satisfies

$$
x^{(0)}=0, \quad x^{(h+1)}=(1-p)+p\left(x^{(h)}\right)^{2} .
$$

Easy to show that the sequence $x^{(0)} \leq x^{(1)} \leq x^{(2)} \leq \ldots$ converges to the smaller solution of $x=(1-p)+p x^{2}$.

Answer to the riddle
The colony dies out with probability $\begin{cases}\frac{1-p}{p} & p>\frac{1}{2}, \\ 1 & p \leq \frac{1}{2} .\end{cases}$
What does this simple problem tell us about matrices and tensors?

A vector version

Now we have cells of n types:
$P_{i j k}=P$ [cell of type k splits into i and j],
$v_{k}=P$ [cell of type k dies without offspring] $=1-\sum_{i, j} P_{i j k}$,
$x_{k}=P$ [colony starting from one type- k cell dies out $]$.

$$
x=\sum_{i, j=1}^{n} P_{i j:} x_{i} x_{j}+v
$$

[Kolmogorov 1940s, Etessami-Yannakakis '05, Bean-Kontoleon-Taylor '08]

Quadratic vector equations

$$
\begin{equation*}
x=\sum_{i, j=1}^{n} P_{i j:} x_{i} x_{j}+v \tag{*}
\end{equation*}
$$

Many properties are similar to those of the scalar version:

- $x=1$ is a solution.
- The corresponding fixed-point equation converges monotonically (starting from $x^{(0)}=\mathbf{0}$).
- The extinction probabilities are given by its limit point x^{*}. Every other solution of $\left({ }^{*}\right)$ is entrywise larger than x^{*} (minimal solution).
- Many other fixed-point recurrences (e.g., Newton's method, Gauss-Seidel-like variants. . .) converge monotonically to x^{*} as well.
[Hautphenne-Latouche-Remiche '11, Etessami-Stewart-Yannakakis '12, P '13]

Numerical experiments

Figure: CPU time for Newton's method on a parameter-dependent problem [Bean-Kontoleon-Taylor '08, Ex. 1]; lower=better

Critical problems

Why the spike? Minimal solution $x^{*} \approx \mathbf{1}$ for that parameter value. Two very close solutions: double $=$ trouble .

Critical problems

Why the spike? Minimal solution $x^{*} \approx \mathbf{1}$ for that parameter value.
Two very close solutions: double $=$ trouble .

Idea

Is it possible to deflate the known solution $x=1$?

Critical problems

Why the spike? Minimal solution $x^{*} \approx \mathbf{1}$ for that parameter value.
Two very close solutions: double $=$ trouble .

Idea

Is it possible to deflate the known solution $x=1$?
Yes! (somehow) Let $y=\mathbf{1}-x$, survival probability. Eqn becomes

$$
y=H_{y} y, \quad\left(H_{y}\right)_{i k}=\sum_{j} P_{i j k}+P_{j i k}-P_{j i k} y_{j}
$$

$y=$ Perron eigenvector of the nonnegative matrix H_{y}.

Perron iteration [Meini-P '11], [Bini-Meini-P '12]

- $y^{(k)}=$ Perron (maximal) eigenvector of $H_{y^{(k-1)}}$.
- Normalize $y^{(k)}$ (s.t. $x=1-\alpha y^{(k)}$ approximate solution of the eqn).
- Iterate.

Numerical experiments

Figure: CPU times on a parameter-dependent problem [Bean-Kontoleon-Taylor '08, Ex. 1]; lower=better

Back to Multilinear Pagerank

Multilinear Pagerank [Gleich-Lim-Yu '15]

Input: two-step transition probabilities $P_{i j k}=P[i \rightarrow j \rightarrow k]$, 'personalization vector' v.
Output: 'importance' score x_{i} of each node

$$
x=\alpha \sum_{i, j=1}^{n} P_{i j: x_{i} x_{j}}+(1-\alpha) v, \quad 1^{\top} x=1
$$

(Not just a $2^{\text {nd }}$-order Markov model: that would rank pairs of nodes, $X_{i j}$).
Very similar equation. Main differences:

- 1 no longer a solution;
- We seek a stochastic solution, which is not necessarily minimal.

Structure of the solutions

$$
g(x)=\alpha \sum_{i, j=1}^{n} P_{i j:} x_{i} x_{j}+(1-\alpha) v
$$

has predictable behaviour on the 'mass' of x : if $\mathbf{1}^{\top} x=w$, then $\mathbf{1}^{\top} g(x)=\alpha w^{2}+(1-\alpha)$.
Consequence: every fixed-point x has $\mathbf{1}^{\top} x=1$ or $\mathbf{1}^{\top} x=\frac{1-\alpha}{\alpha}$.

Theorem

Consider the iteration

$$
x^{(k)}=g\left(x^{(k-1)}\right), \quad x^{(0)}=\mathbf{0} .
$$

- If $\alpha \leq \frac{1}{2}, x^{(k)} \rightarrow x^{*}$, the unique minimal solution with $\mathbf{1}^{\top} x^{*}=1$.
- If $\alpha>\frac{1}{2}, x^{(k)} \rightarrow x^{*}$, the unique minimal solution with $\mathbf{1}^{\top} x^{*}=\frac{1-\alpha}{\alpha}$. There may be several solutions $x \geq x^{*}$ with $\mathbf{1}^{\top} x=1$.

Uniqueness (or not) of stochastic solutions also in [Gleich-Lim-Yu '15].

Numerical experiments

Figure: CPU time for Newton's method on a parameter-dependent multilinear pagerank problem [Gleich-Lim-Yu '5, Ex. R6_5]; lower=better.

Large and small α

- The good When $\alpha \leq \frac{1}{2}$, there is a unique stochastic solution, and many fixed point iterations (e.g. Newton's method, Gauss-Seidel-like variants...) converge to it monotonically.
- The bad When $\alpha>\frac{1}{2}$, there may be multiple stochastic solutions, and convergence may be problematic - even if we enforce $\mathbf{1}^{\top} x^{(k)}=1$.

Large and small α

- The good When $\alpha \leq \frac{1}{2}$, there is a unique stochastic solution, and many fixed point iterations (e.g. Newton's method, Gauss-Seidel-like variants...) converge to it monotonically.
- The bad When $\alpha>\frac{1}{2}$, there may be multiple stochastic solutions, and convergence may be problematic - even if we enforce $\mathbf{1}^{\top} x^{(k)}=1$.
- The ugly Perron-based iterations can be used for the bad case $\alpha>\frac{1}{2}$:
- Compute minimal (sub-stochastic) solution x^{*};
- Change variable $y=x-x^{*}$;
- Interpret resulting equation as $y=H_{y} y$;
- Fixed-point iteration: $y^{(k)}=$ Perron eigenvector of $H_{y^{(k-1)}}$ (or variants)
(Another algorithm involving Perron vectors is in [Benson-Gleich-Lim '17].)

Our goal

[Gleich-Lim-Yu '15] contains 29 small-size benchmark problems ($n \in\{3,4,6\}$), some of them with difficult convergence.

The best methods there (newton and innout) can solve 23 and 26 of them, respectively.

Goal: develop a numerical method that can reliably solve all of them (in a reasonable number of iterations).

Example (R6_3, [Gleich-Lim-Yu '15])

$$
\frac{1}{4}\left[\begin{array}{llllll|llllll|llllll|llllll|llllll|llllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & 0 & 2 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 2 & 0 & 4 & 2 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 4 & 0 & 2 & 0 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 0 & 0 & 4 & 4 & 0 & 1 & 0 & 4 & 4 & 4 & 4 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Improvements

Improvement 1: use Newton's method on $y-\operatorname{pvec}\left(H_{y}\right)=0$, where pvec is the map that computes the Perron vector of a matrix.

An expression for the Jacobian can be found using eigenvector derivatives.

Theorem [Meini-P '17]

The Jacobian of the map $w=\operatorname{pvec}\left(H_{y}\right)$ is

$$
J=\alpha\left(w \mathbf{1}^{\top}-\left(I-H_{y}+w \mathbf{1}^{\top}\right)^{-1} \sum_{j} P_{: j:} w_{j}\right)
$$

(similar to [Bini-Meini-P '11] for the extinction probability problem.)

Improvements

Improvement 2 Use homotopy continuation techniques: first solve the problem for an 'easy' α, then increase its value slowly.

Theorem [Meini-P '17]
Let x_{α} be the solution vector for a certain value of $\alpha \in(0,1)$. Then,

$$
x_{\alpha+h}=x+\left(I-\alpha\left(\sum_{j} P_{: j:}+P_{j::}\right)\right)^{-1}\left(v-\sum P_{i j:}\left(x_{\alpha}\right)_{i}\left(x_{\alpha}\right)_{j}\right) h+O\left(h^{2}\right) .
$$

Step-size heuristic: estimate the neglected second-order term $\frac{\mathrm{d} x_{\alpha}}{\mathrm{d} \alpha^{2}}$, and use it to choose the next step size.

Numerical results

Figure: Performance profile for the 29 examples with $\alpha=0.99$

Numerical results

Figure: Zoomed performance profile for the 29 examples with $\alpha=0.99$

Conclusions

- More understanding for multilinear pagerank problems - from analogy with population models.
- New numerical strategies: Perron-based methods, continuation.
- Can handle all benchmark problems successfully.
- TO-DO: test at real-world scale.

Conclusions

- More understanding for multilinear pagerank problems - from analogy with population models.
- New numerical strategies: Perron-based methods, continuation.
- Can handle all benchmark problems successfully.
- TO-DO: test at real-world scale.

> Thanks for your attention!

