# Duality of matrix pencils, singular pencils and linearizations 

Vanni Noferini ${ }^{1}$ Federico Poloni ${ }^{2}$
${ }^{1}$ School of Mathematics, The University of Manchester
${ }^{2}$ Dept of Computer Science, Università di Pisa

2013 ILAS Meeting<br>Providence, RI, 2013

## Outline

- An old tool and a new one
- Wong chains
- Duality
- Applications
- Symplectic/Hamiltonian pencils
- Fiedler linearizations
- $\mathbb{L}_{1}$ linearizations


## Why Wong chains

Multiple eigenvectors are ill-defined:

$$
\begin{aligned}
& A w=0 \\
& A(v+\alpha w)=0
\end{aligned}
$$

Jordan chains are ill-defined:

$$
\begin{aligned}
& A w=0 \\
& A(v+\alpha w)=w
\end{aligned}
$$

Eigenvectors of singular pencils are ill-defined:

$$
\begin{aligned}
& \left(L_{1} x+L_{0}\right) w=0 \quad \forall x \\
& \left(L_{1} \lambda+L_{0}\right)(v+\alpha w)=0
\end{aligned}
$$

Things are more complicated for longer singular chains + Jordan chains

## So, what's well defined?

Subspaces!
Wong chains [Wong KT, '74]
Wong chain for $L_{1} x+L+0$ attached to $\lambda \in \mathbb{C} \cup\{\infty\}$

$$
\begin{aligned}
\mathcal{W}_{0} & =\{0\} \\
\mathcal{W}_{k+1} & =\left(L_{1} \lambda+L_{0}\right)^{-1}\left(L_{1} \mu+L_{0}\right) \mathcal{W}_{k}
\end{aligned}
$$

for any $\mu \neq \lambda, \mu \in \mathbb{C} \cup\{\infty\} \quad$ (evaluation suitably defined at $\infty$ )
Pencil generalization of the usual algorithm to compute Jordan chains.
$\mathcal{W}_{1}=\operatorname{span}\{$ first vectors of each eigvl- $\lambda$ and singular Kronecker chain $\}$ $\mathcal{W}_{2}=\operatorname{span}\{$ first two vectors of each eigvl- $\lambda$ and singular chain $\}$
.... and so on

## Duality

New tool [Noferini, P., submitted]
Definition
$R_{1} x+R_{0}$ right dual of $L_{1} x+L_{0}$ if

$$
\operatorname{ker}\left[\begin{array}{ll}
L_{1} & L_{0}
\end{array}\right]=\operatorname{im}\left[\begin{array}{c}
R_{0} \\
-R_{1}
\end{array}\right]
$$

Symmetric version: $\left[\begin{array}{ll}L_{1} & L_{0}\end{array}\right]\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]\left[\begin{array}{l}R_{1} \\ R_{0}\end{array}\right]=0$, maximal ranks

Why useful? Like inverses or matrix functions, "transform" Kronecker invariants without computing them

Used implicitly in doubling algorithms, never a first-class citizen though

## Duality and Kronecker form

## Theorem

The Kronecker forms of $L_{1} x+L_{0}$ and its right dual $R_{1} x+R_{0}$ are related:

| $L_{1} x+L_{0}$ | $R_{1} x+R_{0}$ |
| :---: | :---: |
| any regular block | same block |
| $(k-1) \times k$ singular | $k \times(k+1)$ singular |
| $(k+1) \times k$ singular | $k \times(k-1)$ singular |
| $1 \times 0$ singular | nothing |
| nothing | $0 \times 1$ singular |

## Example



## How things change under duality

## Theorem

$M(x)$ minimal basis of $R(x) \Longrightarrow \frac{R(\mu)}{x-\mu} M(x)$ minimal basis of $L(x)$
For all $\mu \in \mathbb{C} \cup\{\infty\}, L(x)$ and $R(x)$ dual

Theorem
$\mathcal{W}_{k}$ Wong chain at $\lambda$ for $R(x) \Longrightarrow \frac{R(\mu)}{\lambda-\mu} \mathcal{W}_{k}$ Wong chain at $\lambda$ for $L(x)$
For all $\mu \neq \lambda, L(x)$ and $R(x)$ dual
Everything works well "projectively" for $\infty$ Results for Wong chains imply easily results for eigenvectors, Jordan chains

## Structured pencils

## Definition [Lin, Mehrmann, Xu '99]

$S(x)=S_{1} x+S_{0} \in \mathbb{C}[x]^{2 n \times 2 n}$ symplectic if $S_{1} J S_{1}^{*}=S_{0} J S_{0}^{*}, J=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$
$J\left(S_{0}^{*} x+S_{1}^{*}\right)$ right dual of $S(x)$. Results above give immediately:

- Eigenvalue pairing $\left(\lambda, 1 / \lambda^{*}\right)$ under general hypotheses
- Constraints on singular blocks: right min. indices $=$ left m.i. -1

Analogous results for Hamiltonian pencils $H_{1} J H_{0}^{*}=-H_{0} J H_{1}^{*}$

## Recap definitions

Given grade-d matrix polynomial $A(x)=\sum_{i=0}^{d} A_{i} x^{i}, 1^{\text {st }}$ companion form

$$
C(x):=\left[\begin{array}{ccccc}
A_{d} x+A_{d-1} & A_{d-2} & A_{d-1} & \cdots & A_{0} \\
I & -I x & & & \\
& I & -I x & & \\
& & \ddots & \ddots & \\
& & & I & -I x
\end{array}\right]
$$

It is a strong linearization, i.e., (recall Fernando's talk)

- same eigenvalues and partial multiplicities as $A(x)$
- same $\operatorname{dim} \operatorname{ker}_{\mathbb{C}(x)} A(x)$ and $\operatorname{dim} \operatorname{ker}_{\mathbb{C}(x)} A(x)^{T}$
(fixes number, but not size, of singular Kronecker blocks)
Minimal basis: minimal-degree polynomial basis of $\operatorname{ker}_{\mathbb{C}(x)} A(x)$


## Fiedler pencils

For a grade-d matrix polynomial, one can construct special matrices $F_{0}, F_{1}, \ldots, F_{d} \in \mathbb{C}^{n d \times n d}$ such that

$$
s F_{d}-F_{\sigma(0)} F_{\sigma(1)} \cdots F_{\sigma(d-1)}
$$

is a strong linearization for any permutation $\sigma$ (choosing $\sigma(i)=d-i$ gives $1^{\text {st }}$ companion form)

Proofs:

- [Antoniou, Vologiannidis '04] regular case
- [De Terán, Dopico, Mackey '09] singular case (more complicated) We can make things simpler using duality


## Same plan as above

- show that what is done in the regular case is duality
- duality works also for singular case, results come without effort


## Proving that Fiedlers are linearizations

Regular case: [Antoniou, Vologiannidis '04] Idea: reduce to $1^{\text {st }}$ companion form
(1) Start from the first companion form, a known linearization

$$
F_{10} x+F_{9} F_{8} F_{7} F_{6} F_{5} F_{4} F_{3} F_{2} F_{1} F_{0}
$$

(2) Prove (using regularity) that it stays a linearization after swapping blocks of "descending" $F_{i}$

$$
F_{10} x+F_{6} F_{5} F_{4} F_{3} F_{2} F_{1} F_{0} F_{9} F_{8} F_{7}
$$

(3) Repeat! Thanks to commutation properties, it's enough to work with "block descending" sequences

$$
F_{10} x+F_{1} F_{0} F_{5} F_{4} F_{3} F_{2} F_{6} F_{9} F_{8} F_{7}
$$

Singular case: point 2 is a duality, so everything works verbatim!

## Minimal bases, Wong chains and eigenvectors

```
Theorem [De Terán, Dopico, Mackey '09] (reworded) \((\mathrm{m} . \mathrm{i}\). in a Fiedler pencil) \()=(\mathrm{m} . \mathrm{i}\). in companion) \(-(\) number of swaps \()\)
```

Similarly, using formulas for minimal bases / Wong chains: Let $c_{1}, \ldots, c_{t}$ block ends for $F(x)$, set $F_{j: i}:=F_{j-1} F_{j-2} \ldots F_{i}$

- $\mu=0: T_{0}=F_{c_{1}: 0} F_{c_{2}: 0} \cdots F_{c_{t}: 0}$
$M(x)$ m.b. for companion $\Longrightarrow \frac{1}{x^{t}} T_{0} M(x)$ m.b. for $F(x)$ $\mathcal{W}_{k}$ Wong chain for companion, $\lambda \neq 0 \Longrightarrow T_{0} \mathcal{W}_{k}$ W.c. for $F(x)$
- $\mu=\infty: T_{\infty}=F_{d: c_{t}}^{-1} F_{d} F_{d: c_{t-1}}^{-1} F_{d} \cdots F_{d: c_{1}}^{-1} F_{d}$
$M(x)$ m.b. for companion $\Longrightarrow T_{\infty} M(x)$ m.b. for $F(x)$ $\mathcal{W}_{k}$ Wong chain for companion, $\lambda \neq \infty \Longrightarrow T_{\infty} \mathcal{W}_{k}$ W.c. for $F(x)$
$\mathbb{L}_{1}$ spaces

Let $B$ span ker $\left[\begin{array}{lll}A_{d} & A_{d-1} & \cdots\end{array} A_{0}\right] ;$ a right dual of the $1^{\text {st }}$ companion is

$$
D(x)=\left(\left[\begin{array}{ccccc}
1 & -x & & & \\
& 1 & -x & & \\
& & \ddots & \ddots & \\
& & & 1 & -x
\end{array}\right] \otimes I_{n}\right) B
$$

[Mackey ${ }^{2}$, Mehl, Mehrmann '06] introduced a space $\mathbb{L}_{1}$ of pencils $L(x)$ that satisfy

$$
\left[\begin{array}{ll}
L_{1} & L_{0}
\end{array}\right]\left[\begin{array}{cc}
0 & I_{n d} \\
-I_{n d} & 0
\end{array}\right]\left[\begin{array}{l}
D_{1} \\
D_{0}
\end{array}\right]=0
$$

Almost the definition of duality, missing rank condition on $\left[\begin{array}{ll}L_{1} & L_{0}\end{array}\right]$

## Relaxing the full $Z$-rank condition

...then they introduce an additional condition (full Z-rank) which makes them strong linearizations

Theorem (part $\left[\mathrm{M}^{4}\right]$, part new)
$A(x)$ regular matrix polynomial. For $L(x)$ in $\mathbb{L}_{1}$, the following are equivalent:
(1) strong linearization of $A(x)$
(2) regular pencil
(3) full Z-rank
(9) left dual of $D(x)$ new!
(3) no common left kernel for $L_{1}, L_{0}$ new! (simplest to check)

If $A(x)$ singular, $3 \Longrightarrow 4 \Longrightarrow 1$
(but not the other way round, counterexamples)

## Conclusions

Why is duality cool?

- natural concept, makes many relations explicit
- allows to play with minimal indices without computing them
- simplifies proofs: singular cases often come for free
- suggests new view and new linearizations


## Conclusions

Why is duality cool?

- natural concept, makes many relations explicit
- allows to play with minimal indices without computing them
- simplifies proofs: singular cases often come for free
- suggests new view and new linearizations

Thanks for your attention

$$
\left[\begin{array}{ll}
L_{1} & L_{0}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{l}
R_{1} \\
R_{0}
\end{array}\right]
$$

