Principal pivot transforms, structured matrices, and matrix equations

Federico Poloni
University of Pisa

ILAS 2019: Linear Algebra Without Borders
Rio de Janeiro, July 2019

What if Martians had linear algebra?

$$
\left[\begin{array}{ll}
\mathrm{I} & \mathrm{~L} \\
\mathrm{~A} & \mathrm{~S}
\end{array}\right]
$$

They would have the same underlying results, but possibly in an 'alien' notation or format: they may not have the same primitives such as linear maps, factorization, or even equal signs.

Principal pivot transforms feel a lot like a tool from a different world.

Principal pivot transforms

Definition

Let $A \in \mathbb{R}^{n \times n}, \mathfrak{s}=\{1: k\}$ (Fortran/Matlab notation), and define (when A_{11} is invertible)

$$
\operatorname{ppt}_{\mathfrak{s}}(A)=\operatorname{ppt}_{\mathfrak{s}}\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\right):=\left[\begin{array}{cc}
-A_{11}^{-1} & A_{11}^{-1} A_{12} \\
A_{21} A_{11}^{-1} & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right] .
$$

Several classical linear algebra objects: inverses, linear system solutions, Schur complements; packaged in an unusual form.

Principal pivot transforms

Definition

Let $A \in \mathbb{R}^{n \times n}, \mathfrak{s}=\{1: k\}$ (Fortran/Matlab notation), and define (when A_{11} is invertible)

$$
\operatorname{ppt}_{\mathfrak{s}}(A)=\operatorname{ppt}_{\mathfrak{s}}\left(\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\right):=\left[\begin{array}{cc}
-A_{11}^{-1} & \pm A_{11}^{-1} A_{12} \\
\pm A_{21} A_{11}^{-1} & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right] .
$$

Several classical linear algebra objects: inverses, linear system solutions, Schur complements; packaged in an unusual form.

Technical detail: we will allow for minus signs on the rows of the $(2,1)$ block, and columns of the $(1,2)$ block.

Signs are important to get symmetry right, but we will not be concerned with them in this talk.

PPTs with general indices

If $\mathfrak{s} \subset\{1,2, \ldots, n\}$ is not $1: k$, we take the same definition but with the first block to mean "the entries in \mathfrak{s} ": to get

replace the dark block with minus its inverse, the white block with the Schur complement, and multiply by the inverse the rows/columns in the light block.
Some would write it

$$
\left[\begin{array}{cc}
B[\mathfrak{s}, \mathfrak{s}] & B\left[\mathfrak{s}, \mathfrak{s}^{\prime}\right] \\
B\left[\mathfrak{s}^{\prime}, \mathfrak{s}\right] & B\left[\mathfrak{s}^{\prime}, \mathfrak{s}^{\prime}\right]
\end{array}\right]=\left[\begin{array}{cc}
-A[\mathfrak{s}, \mathfrak{s}]^{-1} & A[\mathfrak{s}, \mathfrak{s}]^{-1} A\left[\mathfrak{s}, \mathfrak{s}^{\prime}\right] \\
A\left[\mathfrak{s}^{\prime}, \mathfrak{s}\right] A[\mathfrak{s}, \mathfrak{s}]^{-1} & A\left[\mathfrak{s}^{\prime}, \mathfrak{s}^{\prime}\right]-A\left[\mathfrak{s}^{\prime}, \mathfrak{s}\right] A[\mathfrak{s}, \mathfrak{s}]^{-1} A\left[\mathfrak{s}, \mathfrak{s}^{\prime}\right]
\end{array}\right] .
$$

Swapping variables

Review paper [Tsatsomeros, 2000]: PPTs appear in various fields. One way to think about them: $A x=b$ holds iff

$$
\left[\begin{array}{cc}
-A_{11}^{-1} & A_{11}^{-1} A_{12} \\
A_{21} A_{11}^{-1} & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \\
b_{2}
\end{array}\right] .
$$

PPTs "swap" some of the unknowns with right-hand sides.

Elementary PPTs

When the block to be inverted is 1×1, a PPT takes $O\left(n^{2}\right)$ operations: most of it is a rank-1 update of a $(n-1) \times(n-1)$ submatrix.

Quiz: a mysterious alien algorithm

Standard algorithm on every linear algebra textbook published on Mars:
Tnhff-Wbeqna algorithm
Start from $A \in \mathbb{R}^{n \times n}$, and perform elementary PPTs on the entries $1,2,3, \ldots, n$ in sequence. (Actually, in any order at your choice.)

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

- What does this algorithm compute?
- What do we call it on Earth?

Quiz: a mysterious alien algorithm

Standard algorithm on every linear algebra textbook published on Mars:
Tnhff-Wbeqna algorithm
Start from $A \in \mathbb{R}^{n \times n}$, and perform elementary PPTs on the entries $1,2,3, \ldots, n$ in sequence. (Actually, in any order at your choice.)

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

- What does this algorithm compute?
- What do we call it on Earth?

Quiz: a mysterious alien algorithm

Standard algorithm on every linear algebra textbook published on Mars:
Tnhff-Wbeqna algorithm
Start from $A \in \mathbb{R}^{n \times n}$, and perform elementary PPTs on the entries $1,2,3, \ldots, n$ in sequence. (Actually, in any order at your choice.)

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

- What does this algorithm compute?
- What do we call it on Earth?

Quiz: a mysterious alien algorithm

Standard algorithm on every linear algebra textbook published on Mars:
Tnhff-Wbeqna algorithm
Start from $A \in \mathbb{R}^{n \times n}$, and perform elementary PPTs on the entries $1,2,3, \ldots, n$ in sequence. (Actually, in any order at your choice.)

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

- What does this algorithm compute?
- What do we call it on Earth?

Quiz: a mysterious alien algorithm

Standard algorithm on every linear algebra textbook published on Mars:
Tnhff-Wbeqna algorithm
Start from $A \in \mathbb{R}^{n \times n}$, and perform elementary PPTs on the entries $1,2,3, \ldots, n$ in sequence. (Actually, in any order at your choice.)

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right]
$$

- What does this algorithm compute?
- What do we call it on Earth?

Gauss-Jordan algorithm

- Start from $\left[\begin{array}{ll}A & -1\end{array}\right]$.
- Perform row elementary operations to transform it into $\left[\begin{array}{ll}I & X\end{array}\right]$.
- Then, $X=-A^{-1}$.

$$
\left[\begin{array}{ccccc|ccccc}
\times & \times & \times & \times & \times & -1 & 0 & 0 & 0 & 0 \\
\times & \times & \times & \times & \times & 0 & -1 & 0 & 0 & 0 \\
\times & \times & \times & \times & \times & 0 & 0 & -1 & 0 & 0 \\
\times & \times & \times & \times & \times & 0 & 0 & 0 & -1 & 0 \\
\times & \times & \times & \times & \times & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

- Each step is an elementary PPT;
- We store only the "active" part of the matrix at each step, keeping columns mod n.
- Cost: $2 n^{3}$, exactly like inv.

Gauss-Jordan algorithm

- Start from $\left[\begin{array}{ll}A & -1\end{array}\right]$.
- Perform row elementary operations to transform it into $\left[\begin{array}{ll}I & X\end{array}\right]$.
- Then, $X=-A^{-1}$.

$$
\left[\begin{array}{ccccc|ccccc}
1 & \times & \times & \times & \times & \times & 0 & 0 & 0 & 0 \\
0 & \times & \times & \times & \times & \times & -1 & 0 & 0 & 0 \\
0 & \times & \times & \times & \times & \times & 0 & -1 & 0 & 0 \\
0 & \times & \times & \times & \times & \times & 0 & 0 & -1 & 0 \\
0 & \times & \times & \times & \times & \times & 0 & 0 & 0 & -1
\end{array}\right]
$$

- Each step is an elementary PPT;
- We store only the "active" part of the matrix at each step, keeping columns mod n.
- Cost: $2 n^{3}$, exactly like inv.

Gauss-Jordan algorithm

- Start from $\left[\begin{array}{ll}A & -I\end{array}\right]$.
- Perform row elementary operations to transform it into $\left[\begin{array}{ll}I & X\end{array}\right]$.
- Then, $X=-A^{-1}$.

$$
\left[\begin{array}{ccccc|ccccc}
1 & 0 & \times & \times & \times & \times & \times & 0 & 0 & 0 \\
0 & 1 & \times & \times & \times & \times & \times & 0 & 0 & 0 \\
0 & 0 & \times & \times & \times & \times & \times & -1 & 0 & 0 \\
0 & 0 & \times & \times & \times & \times & \times & 0 & -1 & 0 \\
0 & 0 & \times & \times & \times & \times & \times & 0 & 0 & -1
\end{array}\right]
$$

- Each step is an elementary PPT;
- We store only the "active" part of the matrix at each step, keeping columns mod n.
- Cost: $2 n^{3}$, exactly like inv.

Gauss-Jordan algorithm

- Start from $\left[\begin{array}{ll}A & -1\end{array}\right]$.
- Perform row elementary operations to transform it into $\left[\begin{array}{ll}I & X\end{array}\right]$.
- Then, $X=-A^{-1}$.

$$
\left[\begin{array}{ccccc|ccccc}
1 & 0 & 0 & \times & \times & \times & \times & \times & 0 & 0 \\
0 & 1 & 0 & \times & \times & \times & \times & \times & 0 & 0 \\
0 & 0 & 1 & \times & \times & \times & \times & \times & 0 & 0 \\
0 & 0 & 0 & \times & \times & \times & \times & \times & -1 & 0 \\
0 & 0 & 0 & \times & \times & \times & \times & \times & 0 & -1
\end{array}\right]
$$

- Each step is an elementary PPT;
- We store only the "active" part of the matrix at each step, keeping columns mod n.
- Cost: $2 n^{3}$, exactly like inv.

Gauss-Jordan algorithm

- Start from $\left[\begin{array}{ll}A & -1\end{array}\right]$.
- Perform row elementary operations to transform it into $\left[\begin{array}{ll}I & X\end{array}\right]$.
- Then, $X=-A^{-1}$.

$$
\left[\begin{array}{ccccc|ccccc}
1 & 0 & 0 & 0 & \times & \times & \times & \times & \times & 0 \\
0 & 1 & 0 & 0 & \times & \times & \times & \times & \times & 0 \\
0 & 0 & 1 & 0 & \times & \times & \times & \times & \times & 0 \\
0 & 0 & 0 & 1 & \times & \times & \times & \times & \times & 0 \\
0 & 0 & 0 & 0 & \times & \times & \times & \times & \times & -1
\end{array}\right]
$$

- Each step is an elementary PPT;
- We store only the "active" part of the matrix at each step, keeping columns mod n.
- Cost: $2 n^{3}$, exactly like inv.

Gauss-Jordan algorithm

- Start from $\left[\begin{array}{ll}A & -1\end{array}\right]$.
- Perform row elementary operations to transform it into $\left[\begin{array}{ll}I & X\end{array}\right]$.
- Then, $X=-A^{-1}$.

$$
\left[\begin{array}{lllll|ccccc}
1 & 0 & 0 & 0 & 0 & \times & \times & \times & \times & \times \\
0 & 1 & 0 & 0 & 0 & \times & \times & \times & \times & \times \\
0 & 0 & 1 & 0 & 0 & \times & \times & \times & \times & \times \\
0 & 0 & 0 & 1 & 0 & \times & \times & \times & \times & \times \\
0 & 0 & 0 & 0 & 1 & \times & \times & \times & \times & \times
\end{array}\right]
$$

- Each step is an elementary PPT;
- We store only the "active" part of the matrix at each step, keeping columns mod n.
- Cost: $2 n^{3}$, exactly like inv.

What is going on

Given $A \in \mathbb{R}^{n \times n}$ and $\mathfrak{s} \subset\{1,2, \ldots, n\}$, let $G_{\mathfrak{s}}(A)$ be the $2 n \times n$ matrix with columns of $\pm l$ in positions \mathfrak{s} and $n+\mathfrak{s}^{\prime}$, and of A elsewhere:

$$
\begin{aligned}
& G_{\{1,4\}}(A):=\left[\begin{array}{ccccc|ccccc}
1 & A_{12} & A_{13} & 0 & A_{15} & A_{11} & 0 & 0 & A_{14} & 0 \\
0 & A_{22} & A_{23} & 0 & A_{25} & A_{21} & -1 & 0 & A_{24} & 0 \\
0 & A_{32} & A_{33} & 0 & A_{35} & A_{31} & 0 & -1 & A_{34} & 0 \\
0 & A_{42} & A_{43} & 1 & A_{45} & A_{41} & 0 & 0 & A_{44} & 0 \\
0 & A_{52} & A_{53} & 0 & A_{55} & A_{51} & 0 & 0 & A_{54} & -1
\end{array}\right] \\
& G_{\{2,3,4\}}(B):=\left[\begin{array}{ccccc|ccccc}
B_{11} & 0 & 0 & 0 & B_{15} & -1 & B_{12} & B_{13} & B_{14} & 0 \\
B_{21} & 1 & 0 & 0 & B_{25} & 0 & B_{22} & B_{23} & B_{24} & 0 \\
B_{31} & 0 & 1 & 0 & B_{35} & 0 & B_{32} & B_{33} & B_{34} & 0 \\
B_{41} & 0 & 0 & 1 & B_{45} & 0 & B_{42} & B_{43} & B_{44} & 0 \\
B_{51} & 0 & 0 & 0 & B_{55} & 0 & B_{52} & B_{53} & B_{54} & -1
\end{array}\right]
\end{aligned}
$$

What is going on

Theorem

$G_{\mathfrak{s}_{1}}(A)$ and $G_{\mathfrak{s}_{2}}(B)$ have the same row space $\Longleftrightarrow B=\operatorname{ppt}_{\mathfrak{s}_{1} \Delta \mathfrak{s}_{2}}(A)$.

- PPTs convert between G-matrices that have the same row space i.e., they are equivalent by row operations / left multiplication.
- For each k, one among columns k and $n+k$ is $\pm e_{k}$. Each PPT with $k \in \mathfrak{s}$ switches between the two positions.

Consequences:

- All sequences of PPTs that produce the same final \mathfrak{s} return the same matrix.
- The only thing that matters is whether each index k is 'inverted' an even or odd number of times;
- PPTs commute one with each other.

Example Any sequence of PPTs that acts once on each k transforms $\left[\begin{array}{ll}A & -I\end{array}\right]$ into the equivalent matrix $\left[\begin{array}{ll}I & -A^{-1}\end{array}\right]$.

Symmetry

If A is symmetric, then $\operatorname{ppt}_{\mathfrak{s}}(A)$ is symmetric, too.
Clear from the definition:

$$
\operatorname{ppt}_{\mathfrak{s}}(A)=\left[\begin{array}{cc}
-A_{11}^{-1} & \pm A_{11}^{-1} A_{12} \\
\pm A_{21} A_{11}^{-1} & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]
$$

Actually, here we presented the theory with symmetry in mind: a non-symmetric variant with two subsets (rows/columns) instead of one is possible.

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{ll}
I & B \\
A & 0
\end{array}\right]
$$

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{cc}
-1 & B \\
A & -A B
\end{array}\right]
$$

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{cc}
-I+B(A B)^{-1} A & -B(A B)^{-1} \\
-(A B)^{-1} A & (A B)^{-1}
\end{array}\right]
$$

The same PPTs in a different order:

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{cc}
-I+B(A B)^{-1} A & -B(A B)^{-1} \\
-(A B)^{-1} A & (A B)^{-1}
\end{array}\right]
$$

The same PPTs in a different order:

$$
\left[\begin{array}{ll}
1 & B \\
A & 0
\end{array}\right]
$$

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{cc}
-I+B(A B)^{-1} A & -B(A B)^{-1} \\
-(A B)^{-1} A & (A B)^{-1}
\end{array}\right]
$$

The same PPTs in a different order:

$$
\left[\begin{array}{cc}
0 & -A^{-1} \\
B & A^{-1}
\end{array}\right]
$$

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{cc}
-I+B(A B)^{-1} A & -B(A B)^{-1} \\
-(A B)^{-1} A & (A B)^{-1}
\end{array}\right]
$$

The same PPTs in a different order:

$$
\left[\begin{array}{cc}
0 & -A^{-1} \\
-B^{-1} & B^{-1} A^{-1}
\end{array}\right]
$$

Just for fun

A Martian proof that $(A B)^{-1}=B^{-1} A^{-1}$ using (non-symmetric) PPTs:

$$
\left[\begin{array}{cc}
-I+B(A B)^{-1} A & -B(A B)^{-1} \\
-(A B)^{-1} A & (A B)^{-1}
\end{array}\right]
$$

The same PPTs in a different order:

$$
\left[\begin{array}{cc}
0 & -A^{-1} \\
-B^{-1} & B^{-1} A^{-1}
\end{array}\right]
$$

- We could have used symmetric PPTs and a $\left[\begin{array}{cc}0 & M \\ M^{T} & 0\end{array}\right]$ trick.
- Comparing products of pivots, one also gets the relation $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Indefinite linear algebra

Matrices $G_{\mathfrak{s}}(A)$ are related to various matrix structures of indefinite linear algebra with the (antisymmetric) scalar product

$$
J=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right] .
$$

For each \mathfrak{s} and $M=M^{T}$, the rows of $G_{\mathfrak{s}}(M)$ span a Lagrangian subspace $W\left(W\right.$ equals its J-orthogonal $\left.W^{\perp}\right)$.
Actually, each Lagrangian W has a basis of the form $G_{\mathfrak{s}}(M)$. [Dopico
Johnson '06, Mehrmann FP '12]

Structured pencils [Mehrmann FP '12]

Various structured pencils can be written analogously by stacking columns of $\pm I$ and columns of a symmetric $M=\left[\begin{array}{cc}G & A \\ A^{T} & -Q\end{array}\right]$: e.g.,

- Hamiltonian (J-skew-selfadjoint): $\left[\begin{array}{cc}A & G \\ -Q & A^{T}\end{array}\right]-\lambda\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$;
- Symplectic (J-orthogonal): $\left[\begin{array}{cc}A & 0 \\ -Q & I\end{array}\right]-\lambda\left[\begin{array}{cc}I & G \\ 0 & A^{T}\end{array}\right]$.

Same structure, up to block swaps \Longrightarrow same tools can be used.
Applying row transformations to turn $\left[\begin{array}{ll}\mathcal{A} & \mathcal{E}\end{array}\right]$ into $\left[\begin{array}{ll}K \mathcal{A} & K \mathcal{E}\end{array}\right]$

Transforming $\mathcal{A}-\lambda \mathcal{E}$ into a pencil $K(\mathcal{A}-\lambda \mathcal{E})$ with same eigenvalues and right eigenvectors.

Permuted graph bases [Mehrmann FP '12]

Particularly interesting because one can obtain well-conditioned $G_{\mathfrak{s}}(M)$:
Theorem
Every Lagrangian W admits a basis $G_{\mathfrak{s}}(M)$ (with a well-chosen \mathfrak{s}) with

$$
\max _{i j}\left|M_{i j}\right| \leq \sqrt{2}
$$

Proof: given any basis $W \in \mathbb{R}^{n \times 2 n}$, among all 2^{n} possible locations $W_{:, \alpha}$ where we can put l, choose the one with maximal $\left|\operatorname{det} W_{i, \alpha}\right|$.

Bounded $M \Longrightarrow$ small condition number $\kappa\left(G_{\mathfrak{s}}(M)\right)$. Well-conditioned, exactly structure-preserving basis.

Similar "bases" can be used to work with symplectic and Hamiltonian pencils.

Example

$$
Z=\left[\begin{array}{cccc|cccc}
1 & \frac{11}{3} & -\frac{10}{3} & 1 & \frac{1}{6} & -2 & 0 & \frac{8}{3} \\
0 & -\frac{7}{3} & \frac{7}{3} & -1 & \frac{2}{3} & 1 & 0 & -\frac{7}{3} \\
1 & \frac{1}{3} & -1 & 0 & \frac{5}{6} & -1 & -1 & -1 \\
0 & \frac{7}{3} & -\frac{7}{3} & 1 & -\frac{2}{3} & -1 & 0 & \frac{7}{3}
\end{array}\right]
$$

$\operatorname{Im} Z^{T}$ is Lagrangian. It has a basis of the form $G_{s}(M)$ with $M=M^{T}$ and $\max _{i j}\left|M_{i j}\right| \leq \sqrt{2}$:

$$
G_{\{1,4\}}(M)=\left[\begin{array}{cccc|cccc}
1 & \frac{1}{3} & 0 & 0 & \frac{1}{2} & 0 & 0 & -1 \\
0 & 1 & -1 & 0 & \frac{1}{3} & -1 & 0 & \frac{4}{3} \\
0 & -1 & 0 & 0 & 0 & 0 & -1 & -\frac{4}{3} \\
0 & \frac{4}{3} & -\frac{4}{3} & 1 & -1 & 0 & 0 & 1
\end{array}\right]
$$

Remark The non-symmetric analogue (every subspace has a non-symmetric-PPT basis $G_{\mathfrak{s}}(M)$ with $\max _{i j}|M|_{i j} \leq 1$) is in [Knuth '85].

Quasi-definiteness

Another structure: quasi-definiteness. [George, Ikramov '00]

Definition

$A=A^{T}$ is \mathfrak{s}-quasi-definite ($\mathfrak{s - q d}$) if $A_{\mathfrak{s}, \mathfrak{s}} \succ 0$ and $A_{\mathfrak{s}^{\prime}, \mathfrak{s}^{\prime}} \prec 0$ (complementary blocks of opposite definiteness).

Cfr. saddle-point matrices in optimization. [Benzi, Golub, Liesen '05]
If $M=M^{T} \succ 0$, then $\operatorname{ppt}_{\mathfrak{s}}(M)$ exists for all \mathfrak{s}, and is \mathfrak{s}-quasi-definite.
Clear from the definition:

$$
\operatorname{ppt}_{\mathfrak{s}}(M)=\left[\begin{array}{cc}
-M_{11}^{-1} & \pm M_{11}^{-1} M_{12} \\
\pm M_{21} M_{11}^{-1} & M_{22}-M_{21} M_{11}^{-1} M_{12}
\end{array}\right]
$$

PPTs transform qd matrices into other qd matrices (while changing the partition).

PPTs and quasidefiniteness

Consequence (by continuity):
Suppose $M=M^{T}$ is \mathfrak{s}_{1}-weakly-qd $(\prec, \succ$ replaced by $\preceq, \succeq)$.
Then, for each subset \mathfrak{s}_{2}, the matrix ppt $_{\mathfrak{s}_{2}}(M)$ is $\mathfrak{s}_{1} \Delta \mathfrak{s}_{2}$-weakly-qd (when it exists). [FP, Strabić '16]

Example:

$$
\operatorname{ppt}_{\{3,4\}}\left(\left[\begin{array}{ccccc}
+ & + & + & \times & \times \\
+ & + & + & \times & \times \\
+ & + & + & \times & \times \\
\times & \times & \times & - & - \\
\times & \times & \times & - & -
\end{array}\right]\right)=\left[\begin{array}{ccccc}
+ & + & \times & + & \times \\
+ & + & \times & + & \times \\
\times & \times & - & \times & - \\
+ & + & \times & + & \times \\
\times & \times & - & \times & -
\end{array}\right]
$$

The index 3 "switches" from the positive semidef. part to the negative semidef. part; the index 4 does the opposite.

Factored PPTs

Weakly-qd matrices appear frequently in applications, e.g., control theory.
Symplectic $\left[\begin{array}{cc}A & 0 \\ -Q & 1\end{array}\right]-\lambda\left[\begin{array}{cc}1 & G \\ 0 & A^{T}\end{array}\right]$ and Hamiltonian
$\left[\begin{array}{cc}A & G \\ -Q & A^{T}\end{array}\right]-\lambda\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ are built with columns of the quasi-definite

$$
\left[\begin{array}{cc}
G & A \\
A^{T} & -Q
\end{array}\right]=\left[\begin{array}{cc}
B B^{T} & A \\
A^{T} & -C^{T} C
\end{array}\right] .
$$

Often, $\mathrm{rk}(G)$ and $\mathrm{rk}(Q)$ are very small.
Can we perform PPTs while keeping the semidefinite blocks factored?

Factored PPTs

We parametrize a \mathfrak{s}-weakly-qd matrix with (A, B, C) such that

$$
M=\left[\begin{array}{cc}
B B^{T} & A \\
A^{T} & -C^{T} C
\end{array}\right]=: p\left(\left[\begin{array}{c|c}
B & A \\
\star & C
\end{array}\right]\right)
$$

(assume $\mathfrak{s}=\{1,2, \ldots, k\}$ to keep blocks ordered.)
Remark A not necessarily square.
Perform an elementary PPT on entry $k \in \mathfrak{s}$, and look at the semidefinite blocks:

$$
\begin{gathered}
\left(B B^{T}\right)_{1: k-1,1: k-1}-\left(B B^{T}\right)_{1: k-1, k}\left(B B^{T}\right)_{k, k}^{-1}\left(B B^{T}\right)_{k, 1: k-1}, \\
-\left(C^{T} C\right)-\left(A^{T}\right)_{:, k}\left(B B^{T}\right)_{k, k}^{-1}(A)_{k,:}
\end{gathered}
$$

We add a rk-1 term to $C^{T} C \Longrightarrow$ one row inserted in C. We subtract a rk-1 term from $B B^{\top} \Longrightarrow$ one column removed from B (hope).

Factored PPTs: the formula [FP, Strabić '16]

Nice-looking formulas if we apply a Householder reflector H to insert zeros in the last row of B :

$$
\begin{gathered}
\operatorname{ppt}_{\{k\}}\left(p\left(\left[\begin{array}{c|c}
B & A \\
\hline \star & C
\end{array}\right]\right)\right)=\operatorname{ppt}_{\{k\}}\left(p\left(\left[\begin{array}{c|c}
B H & A \\
\hline \star & C
\end{array}\right]\right)\right) \\
=\operatorname{ppt}_{\{k\}}\left(p\left(\left[\begin{array}{cc|c}
B_{11} & b & A_{1} \\
0 & \beta & a \\
\hline \star & \star & C
\end{array}\right]\right)\right)=p\left(\left[\begin{array}{c|cc}
B_{11} & \pm b \beta^{-1} & A_{1}-b \beta^{-1} a \\
\hline \star & \beta^{-1} & \pm \beta^{-1} a \\
\star & 0 & C
\end{array}\right]\right) .
\end{gathered}
$$

Surprisingly, these formulas to update the factors are very similar to a non-factored PPT.

Factored PPTs: the formula

Analogous formula for an elementary PPT with an index in the $C^{T} C$ block:

$$
\begin{aligned}
& \operatorname{ppt}_{\{k+1\}}\left(p\left(\left[\begin{array}{c|c}
B & A \\
\hline \star & C
\end{array}\right]\right)\right)=\operatorname{ppt}_{\{k+1\}}\left(p\left(\left[\begin{array}{c|c}
B & A \\
\hline \star & H C
\end{array}\right]\right)\right. \\
&=\operatorname{ppt}_{\{k+1\}}\left(p\left(\left[\begin{array}{c|cc}
B & a & A_{2} \\
\hline \star & \gamma & c \\
\star & 0 & C_{22}
\end{array}\right]\right)\right)=p\left(\left[\begin{array}{cc|c}
B & \pm a \gamma^{-1} & A_{2}-a \gamma^{-1} c \\
0 & \gamma^{-1} & \pm \gamma^{-1} c \\
\hline \star & \star & C_{22}
\end{array}\right]\right) .
\end{aligned}
$$

Remark We switch rows/columns around between blocks, but $\left[\right.$| B | A |
| :---: | :---: |
| | C |$]$ never changes size.

Inverting quasi-semidefinite matrices

- We know how to perform factored PPTs;
- Elementary PPTs on indices $1,2, \ldots, n$ (in any order) can be used to invert a matrix.
These two ingredients produce an algorithm to compute inverses of quasi-semidefinite matrices

$$
\left[\begin{array}{cc}
B B^{T} & A \\
A^{T} & -C^{T} C
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\hat{B} \hat{B}^{T} & \hat{A} \\
\hat{A}^{T} & -\hat{C}^{T} \hat{C}
\end{array}\right] .
$$

Just perform n PPTs one after the other, in factored form!
Exact ranks are preserved: $(\hat{A}, \hat{B}, \hat{C})$ have the same sizes as $\left(A^{T}, C^{T}, B^{T}\right)$.

Pivoting

Pivoting (i.e., reordering elementary PPTs) works the same as the classical $L D L^{T}$ theory [Bunch-Parlett '71, Bunch-Kaufman '77]: at each step,

- either locate a large diagonal pivot $\left|M_{i i}\right| \ldots$
- ... or a 2×2 pivot with large offdiagonal $\left|M_{i j}\right|$ and smaller diagonal $\left|M_{i i}\right|,\left|M_{j j}\right|$.

But using quasi-definiteness, we can cut some corners:

- Off-diagonal entries in the blocks $B B^{T},-C^{T} C$ are always smaller than diagonal ones;
- 2×2 pivots $P=\left[\begin{array}{ll}\beta & \alpha \\ \bar{\alpha} & \gamma\end{array}\right]$ have $\beta \geq 0, \gamma \leq 0$, hence there is no cancellation in $\operatorname{det} P=\beta \gamma-|\alpha|^{2}$.

Technical detail: we also need a 2×2 version of the factored update formulas.

Stability

Gauss-Jordan can be unstable for general matrices, but not for quasidefinite ones:

Theorem (backward stability) [Benner FP]

When Gauss-Jordan / successive PPTs are used to compute $X=M^{-1}$ for a quasidefinite M (not in factored form), the j th column of \hat{X} is the j th column of $(M+\Delta)^{-1}$, with

$$
|\Delta| \leq p(n) \mathbf{u}\left(\left|L\|D\| L^{*}\right|+|M|\left|L^{-*}\right|\left|L^{*}\right|\right)
$$

Backward stable if:
(1) Not too much element growth in $M=L D L^{*}$;
(2) Not too much element growth when forming L^{-1}.

1 and 2 are related, since $D=L^{-1} M L^{-*}$.
([Peters-Wilkinson '75, Higham '97, Malyshev '00] treat LDL and GJ separately.)

Stability

What about the method with factored-form updates?

Proving stability seems challenging, but computationally residuals are as small as with inv. On 100 matrices with random badly-scaled A, B, C :

Application: sign function and Riccati equations

Definition

Given $A=V \operatorname{diag}\left(\lambda_{i}\right) V^{-1}$, define $\operatorname{sign}(A)=V \operatorname{diag}\left(\operatorname{sign}\left(\lambda_{i}\right)\right) V^{-1}$, where

$$
\operatorname{sign}\left(\lambda_{i}\right)= \begin{cases}-1 & \operatorname{Re}\left(\lambda_{i}\right)<0, \\ 1 & \operatorname{Re}\left(\lambda_{i}\right)>0 .\end{cases}
$$

Theorem [Roberts, '71] Let $S=\operatorname{sign}\left(\left[\begin{array}{cc}A & B B^{T} \\ C^{T} C & -A^{T}\end{array}\right]\right)$. Then,
ker $S+I=\operatorname{span}\left[\begin{array}{c}I \\ -X\end{array}\right]$ and $\operatorname{ker} S-I=\operatorname{span}\left[\begin{array}{l}Y \\ I\end{array}\right]$, where $X \succeq 0$ and
$Y \succeq 0$ solve the Riccati equations

$$
\begin{aligned}
A^{T} X+X A+C^{T} C & =X B B^{T} X, \\
Y A^{T}+A Y+B B^{T} & =Y C^{T} C Y
\end{aligned}
$$

The matrix sign iteration

Matrix sign iteration

$$
H_{0}=H, \quad H_{k+1}=\frac{1}{2}\left(H_{k}+H_{k}^{-1}\right) .
$$

The iteration converges to $\lim _{k \rightarrow \infty} H_{k}=\operatorname{sign}(H)$.
It can be recast using weakly-qd matrices $M_{k}=H_{k} J$. [Gardiner-Laub '86].

$$
M_{0}=H J, \quad M_{k+1}=\frac{1}{2}\left(M_{k}+J M_{k}^{-1} J\right) .
$$

PPT \Longrightarrow matrix sign [Benner, FP]

Algorithm

(1) Start from $H_{0} J=M_{0}=p\left(\left[\begin{array}{l|l}B & A \\ \hline \star & C\end{array}\right]\right)$ from system data
(2 Compute $M_{0}^{-1}=p\left(\left[\begin{array}{c|c}\hat{B} & \hat{A} \\ \hline \star & \hat{C}\end{array}\right]\right)$

- Form $M_{1}=\frac{1}{2}\left(M_{0}+J M_{0}^{-1} J\right)=p\left(\left[\begin{array}{cc|c}\frac{1}{\sqrt{2}}\left[\begin{array}{ll}B & \hat{C}^{T}\end{array}\right] & \frac{1}{2}\left(A+\hat{A}^{T}\right) \\ \star \star & \frac{1}{\sqrt{2}}\left[\begin{array}{c}C \\ \hat{B}^{T}\end{array}\right]\end{array}\right]\right)$
- Optionally, "compress" (rrqr) $\left[\begin{array}{ll}B & \hat{C}^{T}\end{array}\right]$ and $\left[\begin{array}{c}C \\ \hat{B}^{T}\end{array}\right]$
(- Repeat: $M_{2}, M_{3}, M_{4}, \ldots$ until convergence to $\operatorname{sign}\left(H_{0}\right) \mathrm{J}$.

Uses of the matrix sign

This algorithm computes

$$
\operatorname{sign}\left(H_{0}\right)=\left[\begin{array}{cc}
A_{s} & B_{s} B_{s}^{T} \\
C_{s}^{T} C_{s} & -A_{s}^{T}
\end{array}\right]
$$

directly in factored form (without forming Gram matrices and refactoring them as in [Benner-Ezzatti-Quintana Ortí-Remón '14]).

What do we do with it?

- B_{s}, C_{s} used directly in applications in model reduction [Wortelboer, '94]
- Solutions to CAREs from $\operatorname{ker}\left(\operatorname{sign}\left(H_{0}\right) \pm I\right)$

It is well-established that often $X=Z Z^{\top}, Y=W W^{\top}$ have low numerical rank (see e.g. [Benner, Bujanović '16]).

Can we compute them directly in factored form?

Think like an alien

Idea Try to see everything as PPTs / Schur complements.
Cayley transform via PPTs [Benner, FP]
Given $H=\left[\begin{array}{cc}A & B B^{T} \\ C^{T} C & -A^{T}\end{array}\right]$, we can compute its Cayley transform

$$
(H-I)^{-1}(H+I)=\left[\begin{array}{cc}
I & B_{c} B_{c}^{T} \\
0 & A_{c}^{T}
\end{array}\right]^{-1}\left[\begin{array}{cc}
A_{c} & 0 \\
-C_{c}^{T} C_{c} & I
\end{array}\right]
$$

getting $\left[\begin{array}{cc}B_{c} B_{c}^{T} & A_{c} \\ A_{c}^{T} & -C_{c}^{T} C_{c}\end{array}\right]$ as the Schur complement of the quasidefinite
$\left.\begin{array}{cc|cc}\hline B B^{T} & 0 & A-l & -\sqrt{2} I \\ 0 & 0 & \sqrt{2} I & I \\ \hline A^{T}-I & \sqrt{2} I & -C^{T} C & 0 \\ -\sqrt{2} l & I & 0 & 0\end{array}\right]$.

PPTs \Longrightarrow Cayley transforms \Longrightarrow Riccati solutions

Algorithm

(1) Input: A, B, C.
(2) Run sign iteration on $H_{0}=\left[\begin{array}{cc}A & B B^{T} \\ C^{T} C & -A^{T}\end{array}\right]$ via PPTs, getting

$$
H_{\infty}=\operatorname{sign}\left(H_{0}\right)=\left[\begin{array}{cc}
A_{s} & B_{s} B_{s}^{T} \\
C_{s}^{T} C_{s} & -A^{T}
\end{array}\right] .
$$

(3) Compute Cayley transform

$$
\left(H_{\infty}-I\right)^{-1}\left(H_{\infty}+I\right)=\left[\begin{array}{cc}
I & B_{c} B_{c}^{T} \\
0 & A_{c}^{T}
\end{array}\right]^{-1}\left[\begin{array}{cc}
A_{c} & 0 \\
-C_{c}^{T} C_{c} & I
\end{array}\right] \text { via PPTs. }
$$

(9) Then, $X=C_{c}^{T} C_{c}, Y=B_{c} B_{c}^{T}$ solve the two CAREs.

Some preliminary experiments

- Some improvement on sign.
- Returns factored iterates natively.
- Still some work to do!

PPTs \Longrightarrow sign iteration

Possible solution: More PPTs!

One step of the sign iteration

$$
H_{0}=\left[\begin{array}{cc}
A & B B^{T} \\
C^{T} C & -A^{T}
\end{array}\right] \mapsto \frac{1}{2}\left(H_{0}+H_{0}^{-1}\right)=\left[\begin{array}{cc}
A_{1} & B_{1} B_{1}^{T} \\
C_{1}^{T} C_{1} & -A_{1}^{T}
\end{array}\right]
$$

can be interpreted as a Schur complement

And so can various other operations; e.g., a step of structured doubling algorithm [Chu-Fan-Lin-Wang '04].

Conclusions

- What we did: factored PPTs \Longrightarrow quasidefinite inverses \Longrightarrow matrix sign \Longrightarrow Riccati solutions.
- PPTs are an unusual but elegant tool "from another planet" for linear algebra.
- Ask yourself: can I write this as a Schur complement / PPT?
- Quasi-definite / saddle-point matrices fit naturally in this framework.
- On the TO-DO list: run these algorithms not on $H=\left[\begin{array}{cc}A & B B^{T} \\ C^{T} C & -A^{T}\end{array}\right]$ and its blocks, but on its version with $\max _{i j}|M|_{i j} \leq \sqrt{2}$
(as in [Mehrmann P '12] for the structured doubling algorithm).
- Co-authors: Volker Mehrmann, Nataša Strabić, Peter Benner.

Conclusions

- What we did: factored PPTs \Longrightarrow quasidefinite inverses \Longrightarrow matrix sign \Longrightarrow Riccati solutions.
- PPTs are an unusual but elegant tool "from another planet" for linear algebra.
- Ask yourself: can I write this as a Schur complement / PPT?
- Quasi-definite / saddle-point matrices fit naturally in this framework.
- On the TO-DO list: run these algorithms not on $H=\left[\begin{array}{cc}A & B B^{T} \\ C^{T} C & -A^{T}\end{array}\right]$ and its blocks, but on its version with $\max _{i j}|M|_{i j} \leq \sqrt{2}$
(as in [Mehrmann P '12] for the structured doubling algorithm).
- Co-authors: Volker Mehrmann, Nataša Strabić, Peter Benner.
$\longleftrightarrow \ldots$ and many thanks to $\left[\begin{array}{ll}\mathrm{I} & \mathrm{L} \\ \mathrm{A} & \mathrm{S}\end{array}\right]$

