Estimating Econometric Models through Matrix Equations

Federico Poloni¹ Giacomo Sbrana²

¹U Pisa, Dept of Computer Science ²Rouen Business School, France

No Free Lunch Seminar SNS, Pisa, February 2013

VARMA(1,1) models

VARMA(1,1)

$$x_t - \Phi x_{t-1} = u_t - \Theta u_{t-1}$$

 $egin{aligned} & x_t = ext{observed variable} \in \mathbb{R}^d \ & u_t = ext{white noise (enough to assume uncorrelated)} \in \mathbb{R}^d \ & \Phi, \Theta \in \mathbb{R}^{d imes d}, \ &
ho(\Phi) < 1, \ &
ho(\Theta) < 1 \end{aligned}$

Many known models to simulate volatility reduce to VARMA(1,1):

- GARCH(1,1)
- Multivariate stochastic volatility models

Estimating VARMAs

Problem

Given enough observations (x_t) generated by a VARMA, determine parameters Φ , Θ

A common choice is **QML** (quasi-maximum-likelihood):

- Assume ut Gaussian independent
- Siven guesses $\hat{\Phi}, \hat{\Theta}$, compute likelihood $\ell(\hat{\Phi}, \hat{\Theta})$ of generating the given time series
- Seed ℓ(·, ·) into a black-box minimization procedure (e.g., Matlab's fminunc)

Problems with QML

- Costly: each function evaluation costs O(nd³), with n = length of time series. Hundreds or thousands required
- Black-box: difficult to implement and tweak, and understand what's going on.
- No convergence guarantees, non-convex optimization problem in many variables
- Hey doc, what if our ut isn't Gaussian independent?

Our attempt

Moments estimator: determine Φ, Θ as a function of the autocovariances

$$M_k = \mathbb{E}_{\mathsf{t}}\left[x_t x_{t+k}^{\mathsf{T}}\right]$$

 $(\mathbb{E}_{t} [\cdot] := stationary limit mean)$

The M_k contain cov's among all variables of the time series, e.g., (d = 3)

$$x_{t} = \begin{bmatrix} a_{t} \\ b_{t} \\ c_{t} \end{bmatrix} \Rightarrow M_{k} = \begin{bmatrix} \mathbb{E}_{t} [a_{t}a_{t+k}] & \mathbb{E}_{t} [a_{t}b_{t+k}] & \mathbb{E}_{t} [a_{t}c_{t+k}] \\ \mathbb{E}_{t} [b_{t}a_{t+k}] & \mathbb{E}_{t} [b_{t}b_{t+k}] & \mathbb{E}_{t} [b_{t}c_{t+k}] \\ \mathbb{E}_{t} [c_{t}a_{t+k}] & \mathbb{E}_{t} [c_{t}b_{t+k}] & \mathbb{E}_{t} [c_{t}c_{t+k}] \end{bmatrix}$$

Moment estimator

We will show $(\Phi, \Theta) = f(M_0, M_1, M_2)$

GMM estimator

• Compute sample
$$\hat{M}_k = \frac{1}{n} \sum x_t x_{t+k}^T$$

• Get $(\hat{\Phi}, \hat{\Theta}) = f(\hat{M}_0, \hat{M}_1, \hat{M}_2)$

- Very fast: working only with $d \times d$ matrices, no dependence on n (after computing moments)
- Asymptotically consistent and normal, under suitable conditions
- In simulated experiments, not as accurate as QML, but good as initial value

Already known for univariate GARCH; generalization requires some linear algebra machinery

Yule-Walker results

The parameter Φ is easy to obtain:

Theorem

 $\Phi = M_{k+1}M_k^{-1}$ for each $k \ge 1$

In particular $\Phi = M_2 M_1^{-1}$

Proof:

$$\underbrace{\mathbf{x}_{t-k-1}(\mathbf{x}_t - \mathbf{\Phi}\mathbf{x}_{t-1})^T}_{=M_{k+1} - \mathbf{\Phi}M_k} = \underbrace{\mathbf{x}_{t-k-1}(u_t - \mathbf{\Theta}u_{t-1})^T}_{=0 \text{ if } k \ge 1}$$

Estimating Θ

Let
$$r_t = x_t - \Phi x_{t-1} = u_t - \Theta u_{t-1}$$
, $Y := \mathbb{E}\left[u_t u_t^T\right]$

$$\Gamma_{0} := \mathbb{E}_{t} \left[r_{t} r_{t}^{T} \right] = M_{0} - \Phi M_{1}^{T} - M_{1} \Phi^{T} + \Phi M_{0} \Phi^{T} = \mathbf{Y} + \Theta \mathbf{Y} \Theta^{T}$$
$$\Gamma_{1} := \mathbb{E}_{t} \left[r_{t} r_{t+1}^{T} \right] = M_{1} - \Phi M_{0} = -\Theta \mathbf{Y}$$

Blue expressions allow us to compute Γ_0 , Γ_1 . Use them + red expressions to decouple equations for Y, $X = \Theta^T$

$$\Gamma_0 = Y + \Gamma_1 Y^{-1} \Gamma_1^T$$

$$\Gamma_1^T + \Gamma_0 X + \Gamma_1 X^2 = 0$$

Existence and unicity

$$\Gamma_0 = Y + \Gamma_1 Y^{-1} \Gamma_1^T$$

$$\Gamma_1^T + \Gamma_0 X + \Gamma_1 X^2 = 0$$

Studied by matrix equation people (like me)

Existence and unicity

- Solution exists if Q(λ) := Γ₁^Tλ⁻¹ + Γ₀ + Γ₁λ is such that Q(λ) > 0 for each λ on unit circle
- Solution unique if we ask Y > 0, $\rho(X) < 1$ (as was assumed)

Of course, if the model is well-posed, there must be a solution...

How to solve matrix equations

Let us focus on $\Gamma_1^T + \Gamma_0 X + \Gamma_1 X^2 = 0$ Solution resembles a lot linear recurrence theory

Generalized eigenvalues/Vectors of the problem:

$$(\lambda, \mathbf{v})$$
 s.t. $(\Gamma_1^T + \Gamma_0 \lambda + \Gamma_1 \lambda^2)\mathbf{v} = 0$

(there are 2*d* of them!)

Theorem

Solutions can be eigendecomposed as $X = VDV^{-1}$ V contains d of the 2d eigenvectors of the problem, D diagonal with eigenvalues

Generalized eigenvalues

Companion matrix

Eigenvalues/eigenvectors are in 1:1 correspondence with those of the linearization matrix

$$\begin{bmatrix} 0 & I_d \\ -\Gamma_1^{-1}\Gamma_1^T & -\Gamma_1^{-1}\Gamma_0 \end{bmatrix}$$

Matrix version of the "companion matrix" for polynomials

Palindromic matrix polynomials

Due to the structure in
$$\Gamma_1^T + \Gamma_0 \lambda + \Gamma_1 \lambda^2$$
, $\Gamma_0 = \Gamma_0^T$, eigenvalues come in pairs (λ, λ^{-1})

Good for us — we needed d of them with |d| < 1!

To sum up

- **①** Get sample moments M_0, M_1, M_2
- 2 Get $\Phi = M_2 M_1^{-1}$
- **3** Compute Γ_0 , Γ_1

• Get eigenvalues/vectors of
$$\begin{bmatrix} 0 & I_d \\ -\Gamma_1^{-1}\Gamma_1^T & -\Gamma_1^{-1}\Gamma_0 \end{bmatrix}$$

- **(**) Take those with λ inside the unit circle
- Assemble $\Theta^T = X = VDV^{-1}$

What can go wrong

Sometimes, no stationary/invertible model with autocovariances \hat{M}_i

Existence and unicity

• Solution X, Y exists if $Q(\lambda) := \Gamma_1^T \lambda^{-1} + \Gamma_0 + \Gamma_1 \lambda$ is such that $Q(\lambda) > 0$ for each λ on unit circle

Must hold with exact Γ_i , but sample $\hat{\Gamma}_i$ might give inconsistent data \Rightarrow Perturb M_0 , M_1 , M_2 to ensure solvability!

Figure: Diagonal GARCH, d = 2, $\rho(\Theta) = 0.6$, n = 1000

Figure: Diagonal GARCH, d = 2, $\rho(\Theta) = 0.6$, n = 1000

Figure: Diagonal GARCH, d = 2, $\rho(\Theta) = 0.7$, n = 1000

Figure: Diagonal GARCH, d = 3, $\rho(\Theta) = 0.6$, n = 1000

Figure: Diagonal GARCH, d = 3, $\rho(\Theta) = 0.6$, n = 1000, larger off-diagonal elements

Poloni, Sbrana (Pisa, Rouen)

Figure: Diagonal GARCH, d = 3, $\rho(\Theta) = 0.6$, n = 500

Figure: Diagonal GARCH, d = 2, $\rho(\Theta) = 0.7$, n = 500

Figure: Diagonal GARCH, d = 2, $\rho(\Theta) = 0.6$, n = 5000

Figure: Diagonal GARCH, d = 2, $\rho(\Theta) = 0.7$, n = 5000

Possible improvements

- Improve solvability enforcement (work on Θ and Φ at the same time)
- Combine with an iterative ML-like optimization e.g., GLS (generalized least squares) for GARCH?
- More intensive testing & applications

Possible improvements

- Improve solvability enforcement (work on Θ and Φ at the same time)
- Combine with an iterative ML-like optimization e.g., GLS (generalized least squares) for GARCH?
- More intensive testing & applications

Thanks for your attention!