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VARMA(1,1) models

VARMA(1,1)

xt − Φxt−1 = ut −Θut−1

xt = observed variable ∈ Rd

ut = white noise (enough to assume uncorrelated) ∈ Rd

Φ,Θ ∈ Rd×d , ρ(Φ) < 1, ρ(Θ) < 1

Many known models to simulate volatility reduce to VARMA(1,1):
GARCH(1,1)
Multivariate stochastic volatility models
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Estimating VARMAs

Problem
Given enough observations (xt) generated by a VARMA, determine
parameters Φ, Θ

A common choice is QML (quasi-maximum-likelihood):
1 Assume ut Gaussian independent
2 Given guesses Φ̂, Θ̂, compute likelihood `(Φ̂, Θ̂) of generating the

given time series
3 Feed `(·, ·) into a black-box minimization procedure (e.g., Matlab’s

fminunc)

Poloni, Sbrana (Pisa, Rouen) Matrix eqns estimators SNS Seminar 2013 3 / 23



Problems with QML

1 Costly: each function evaluation costs O(nd3), with
n = length of time series. Hundreds or thousands required

2 Black-box: difficult to implement and tweak, and understand what’s
going on.

3 No convergence guarantees, non-convex optimization problem in
many variables

4 Hey doc, what if our ut isn’t Gaussian independent?
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Our attempt

Moments estimator: determine Φ,Θ as a function of the autocovariances

Mk = Et
[
xtxT

t+k

]
(Et [·] := stationary limit mean)
The Mk contain cov’s among all variables of the time series, e.g., (d = 3)

xt =

at
bt
ct

⇒ Mk =

Et [atat+k ] Et [atbt+k ] Et [atct+k ]
Et [btat+k ] Et [btbt+k ] Et [btct+k ]
Et [ctat+k ] Et [ctbt+k ] Et [ctct+k ]


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Moment estimator

We will show (Φ,Θ) = f (M0,M1,M2)

GMM estimator
1 Compute sample M̂k = 1

n
∑

xtxT
t+k

2 Get (Φ̂, Θ̂) = f (M̂0, M̂1, M̂2)

Very fast: working only with d × d matrices, no dependence on n
(after computing moments)
Asymptotically consistent and normal, under suitable conditions
In simulated experiments, not as accurate as QML, but good as initial
value

Already known for univariate GARCH; generalization requires some linear
algebra machinery
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Yule-Walker results

The parameter Φ is easy to obtain:

Theorem
Φ = Mk+1M−1

k for each k ≥ 1

In particular Φ = M2M−1
1

Proof:
xt−k−1(xt − Φxt−1)

T︸ ︷︷ ︸
=Mk+1−ΦMk

= xt−k−1(ut −Θut−1)
T︸ ︷︷ ︸

=0 if k ≥ 1
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Estimating Θ

Let rt = xt − Φxt−1 = ut −Θut−1, Y := E
[
utuT

t

]
Γ0 := Et

[
rtrT

t

]
= M0 − ΦMT

1 −M1Φ
T + ΦM0Φ

T = Y +ΘYΘT

Γ1 := Et
[
rtrT

t+1

]
= M1 − ΦM0 = −ΘY

Blue expressions allow us to compute Γ0, Γ1.
Use them + red expressions to decouple equations for Y , X = ΘT

Γ0 = Y + Γ1Y −1ΓT
1

ΓT
1 + Γ0X + Γ1X 2 = 0
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Existence and unicity

Γ0 = Y + Γ1Y −1ΓT
1

ΓT
1 + Γ0X + Γ1X 2 = 0

Studied by matrix equation people (like me)

Existence and unicity
Solution exists if Q(λ) := ΓT

1 λ
−1 + Γ0 + Γ1λ is such that Q(λ) > 0

for each λ on unit circle
Solution unique if we ask Y > 0, ρ(X ) < 1 (as was assumed)

Of course, if the model is well-posed, there must be a solution. . .
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How to solve matrix equations

Let us focus on ΓT
1 + Γ0X + Γ1X 2 = 0

Solution resembles a lot linear recurrence theory

Generalized eigenvalues/Vectors of the problem:

(λ, v) s.t. (ΓT
1 + Γ0λ+ Γ1λ

2)v = 0

(there are 2d of them!)

Theorem
Solutions can be eigendecomposed as X = VDV −1

V contains d of the 2d eigenvectors of the problem, D diagonal with
eigenvalues
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Generalized eigenvalues

Companion matrix
Eigenvalues/eigenvectors are in 1:1 correspondence with those of the
linearization matrix [

0 Id
−Γ−1

1 ΓT
1 −Γ−1

1 Γ0

]
Matrix version of the “companion matrix” for polynomials

Palindromic matrix polynomials
Due to the structure in ΓT

1 + Γ0λ+ Γ1λ
2, Γ0 = ΓT

0 ,
eigenvalues come in pairs (λ, λ−1)

Good for us — we needed d of them with |d | < 1!
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To sum up

1 Get sample moments M0,M1,M2
2 Get Φ = M2M−1

1
3 Compute Γ0, Γ1

4 Get eigenvalues/vectors of
[

0 Id
−Γ−1

1 ΓT
1 −Γ−1

1 Γ0

]
5 Take those with λ inside the unit circle
6 Assemble ΘT = X = VDV −1
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What can go wrong
Sometimes, no stationary/invertible model with autocovariances M̂i

Existence and unicity
Solution X , Y exists if Q(λ) := ΓT

1 λ
−1 + Γ0 + Γ1λ is such that

Q(λ) > 0 for each λ on unit circle

Must hold with exact Γi , but sample Γ̂i might give inconsistent data
⇒ Perturb M0, M1, M2 to ensure solvability!
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Some results
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Figure: Diagonal GARCH, d = 2, ρ(Θ) = 0.6, n = 1000

Poloni, Sbrana (Pisa, Rouen) Matrix eqns estimators SNS Seminar 2013 14 / 23



Some results

0 5 10 15 20

0

50

100

150

200

250

experiment #

CP
U

tim
e

(s
)

Closed-form
ML

Figure: Diagonal GARCH, d = 2, ρ(Θ) = 0.6, n = 1000
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Figure: Diagonal GARCH, d = 2, ρ(Θ) = 0.7, n = 1000

Poloni, Sbrana (Pisa, Rouen) Matrix eqns estimators SNS Seminar 2013 16 / 23



Some results

0 5 10 15 20

0.4

0.6

0.8

experiment #

re
lat

ive
RM

S
er

ro
r

Closed-form
ML

Figure: Diagonal GARCH, d = 3, ρ(Θ) = 0.6, n = 1000

Poloni, Sbrana (Pisa, Rouen) Matrix eqns estimators SNS Seminar 2013 17 / 23



Some results

0 5 10 15 20

0.4

0.6

0.8

experiment #

re
lat

ive
RM

S
er

ro
r

Closed-form
ML

Figure: Diagonal GARCH, d = 3, ρ(Θ) = 0.6, n = 1000, larger off-diagonal
elements
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Figure: Diagonal GARCH, d = 3, ρ(Θ) = 0.6, n = 500
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Some results
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Figure: Diagonal GARCH, d = 2, ρ(Θ) = 0.7, n = 500
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Figure: Diagonal GARCH, d = 2, ρ(Θ) = 0.6, n = 5000
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Some results
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Figure: Diagonal GARCH, d = 2, ρ(Θ) = 0.7, n = 5000
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Possible improvements

Improve solvability enforcement (work on Θ and Φ at the same time)
Combine with an iterative ML-like optimization
e.g., GLS (generalized least squares) for GARCH?
More intensive testing & applications

Thanks for your attention!
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