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Triplet representations for matrix equations
in queuing theory

Federico Poloni (U of Pisa, fpoloni@di.unipi.it) — Joint work with Giang T. Nguyen (U of Adelaide)

Our problem

Markov-modulated fluid queues and Brownian motion: liquid in an
infinite buffer; in- and out-flow (and possibly BM variance) depend
on environment state (continuous-time Markov chain)
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Stationary measure for level x : p(x) ∈ R1×n satisfying a BVP

p̈V − ṗD + Q = 0 + boundary cond’ns at 0 and ∞
V : diagonal with vii ≥ 0
D: diagonal with mixed-sign dii
Q: continuous-time Markov chain, Q1 = 0, offdiag(Q) > 0

Key to find it: left stable invariant pair, X 2UV − XUD + UQ = 0
U (hopefully > 0) “projection”, X square containing eigenvalues of
the problem in the (open) left half-plane

Accuracy goal

Our aim solving the problem with componentwise accuracy:

|M − M̃ | 6 εM for computed quantity M > 0

Inequality and |·| to hold entrywise, even on very small entries
Problem Subtractive cancellation → loss of significant digits
Solution Avoid all the subtractions!

Triplet representations

An M-matrix A can be recovered from:
I its off-diagonal part, offdiag(A), and
I v > 0, w > 0 such that Av = w

Example 1 [
1 −1
−1 1 + ε

] [
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]
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]
Values in red (offdiag(A), v ,w) uniquely determine the matrix

With a triplet representation, one can run subtraction-free Gaussian
elimination on A (GTH-like algorithm): solves systems with
componentwise error O(n3u). No condition number!

Matrix
entries

Triplet
repres A−1

ill-conditioned

κcw(A)u

well-conditioned

O(n3u)

The first-order case

Case V = 0 more studied. Formulated equivalently as nonsymmetric
algebraic Riccati equation. Best class of algorithms: doubling

[Xue, Xu, Li] gave perturbation bound, highlighted need for triplets

First-order case: doubling algorithm

Idea Compute stable modes from limt→∞ exp(At), via a
matrix-pencil version of scaling and squaring

1. First approximation via Padé (“continuous to discrete”)
exp(tx) ≈ C(x) = (1 + βx)(1− αx)−1

2. Squaring, representing intermediate matrices implicitly

What we add to this case:

Triplets
Explicit triplets for the inversions =⇒ subtraction-free algorithm

triplet(I − GkHk) = (offdiag(GkHk), 1,Ek1 + GkFk1)

triplet(I − HkGk) = (offdiag(HkGk), 1, Fk1 + HkEk1)

No need to get them back from the matrix entries

Error analysis
Componentwise accurate U > 0 and triplet representation for X :

|U − Ũ | 6 cuU , same for X

Coefficient c grows:
I linearly with 1− ρ(C(X )) (distance to instability)
I cubically (upper bound, linear in practice) with dimension n

Second-order case: cyclic reduction

Base algorithm (from [Latouche, Nguyen]):

1. continuous-to-discrete transformation y = C(x)

2. Cyclic reduction (CR) – classical doubling-type algorithm for
quadratic problems

Problems
I Not subtraction-free — signs are simply wrong for that
I Infinite eigenvalues from zeros in V complicate convergence

Solution: shift technique/order reduction. With correct choices and
parameters, fixes both issues at the same time
Infinite eigenvalues deflated automatically
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More ingredients for a subtraction-(essentially)-free algorithm:
I Choosing parameters: α = 0, β from problem magnitudes

Triplets for CR — simpler (stochastic) case

triplet(B̂k) = (offdiag(B̂k), 1,CkBkA01)

I Don’t compute solution R = C0B̂
−1
k to the matrix equation, but

invariant pair U = B̂k,X = B̂−1
k RB̂k
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