Triplet representations for matrix equations in queuing theory

Federico Poloni (U of Pisa, fpoloni@di. unipi.it) — Joint work with Giang T. Nguyen (U of Adelaide)

Our problem

Markov-modulated fluid queues and Brownian motion: liquid in an infinite buffer; in- and out-flow (and possibly BM variance) depend on environment state (continuous-time Markov chain)

time

Stationary measure for level $x: p(x) \in \mathbb{R}^{1 \times n}$ satisfying a BVP $\ddot{p} V-\dot{p} D+Q=0 \quad+$ boundary cond'ns at 0 and ∞
V : diagonal with $v_{i i} \geq 0$
D : diagonal with mixed-sign $d_{i i}$
Q : continuous-time Markov chain, $Q \underline{\mathbf{1}}=0, \operatorname{offdiag}(Q) \geqslant 0$
Key to find it: left stable invariant pair, $X^{2} U V-X U D+U Q=0$ U (hopefully $\geqslant 0$) "projection", X square containing eigenvalues of the problem in the (open) left half-plane

Accuracy goal

Our aim solving the problem with componentwise accuracy:

$$
|M-\tilde{M}| \leqslant \varepsilon M \quad \text { for computed quantity } M \geqslant 0
$$

Inequality and $|\cdot|$ to hold entrywise, even on very small entries Problem Subtractive cancellation \rightarrow loss of significant digits Solution Avoid all the subtractions!

Triplet representations

An M-matrix A can be recovered from:

- its off-diagonal part, offdiag(A), and
- $v>0, w \geqslant 0$ such that $A v=w$

Example 1

$$
\left[\begin{array}{cc}
1 & -1 \\
-1 & 1+\varepsilon
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
\varepsilon
\end{array}\right]
$$

Values in red $(\operatorname{offdiag}(A), v, w)$ uniquely determine the matrix
With a triplet representation, one can run subtraction-free Gaussian elimination on A (GTH-like algorithm): solves systems with componentwise error $O\left(n^{3} \mathbf{u}\right)$. No condition number!

Matrix	ill-conditioned	Triplet repres	well-conditioned	A^{-1}
entries	$\kappa_{c w}(A) \mathbf{u}$		O	

The first-order case

Case $V=0$ more studied. Formulated equivalently as nonsymmetric algebraic Riccati equation. Best class of algorithms: doubling [Xue, $\mathrm{Xu}_{\mathrm{u}}, \mathrm{Li}$] gave perturbation bound, highlighted need for triplets

First-order case: doubling algorithm

Idea Compute stable modes from $\lim _{t \rightarrow \infty} \exp (A t)$, via a matrix-pencil version of scaling and squaring

1. First approximation via Padé ("continuous to discrete") $\exp (t x) \approx \mathcal{C}(x)=(1+\beta x)(1-\alpha x)^{-1}$
2. Squaring, representing intermediate matrices implicitly

What we add to this case:

Triplets

Explicit triplets for the inversions \Longrightarrow subtraction-free algorithm

$$
\begin{aligned}
\operatorname{triplet}\left(I-G_{k} H_{k}\right) & =\left(\operatorname{offdiag}\left(G_{k} H_{k}\right), \underline{\mathbf{1}}, E_{k} \underline{\mathbf{1}}+G_{k} F_{k} \underline{\mathbf{1}}\right) \\
\operatorname{triplet}\left(I-H_{k} G_{k}\right) & =\left(\operatorname{offdiag}\left(H_{k} G_{k}\right), \underline{\mathbf{1}}, F_{k} \underline{1}+H_{k} E_{k} \underline{1}\right)
\end{aligned}
$$

No need to get them back from the matrix entries
Error analysis
Componentwise accurate $U \geqslant 0$ and triplet representation for X :

$$
|U-\tilde{U}| \leqslant c \mathbf{u} U, \quad \text { same for } X
$$

Coefficient c grows:

- linearly with $1-\rho(\mathcal{C}(X))$ (distance to instability)
- cubically (upper bound, linear in practice) with dimension n

Second-order case: cyclic reduction

Base algorithm (from [Latouche, Nguyen]):

1. continuous-to-discrete transformation $y=\mathcal{C}(x)$
2. Cyclic reduction (CR) - classical doubling-type algorithm for quadratic problems

Problems

- Not subtraction-free - signs are simply wrong for that - Infinite eigenvalues from zeros in V complicate convergence Solution: shift technique/order reduction. With correct choices and parameters, fixes both issues at the same time Infinite eigenvalues deflated automatically

$$
\begin{aligned}
& P(x)=\left[\begin{array}{lll}
+ & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] x^{2}-\left[\begin{array}{lll}
* & 0 & 0 \\
0 & + & 0 \\
0 & 0 & -
\end{array}\right] x+\left[\begin{array}{l}
*++ \\
+*+ \\
++*
\end{array}\right] \\
& \widehat{P}(x)=\left[\begin{array}{lll}
+ & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & +
\end{array}\right] x^{2}-\left[\begin{array}{lll}
* & 0 & - \\
0 & + & - \\
0 & 0 & -
\end{array}\right] x+\left[\begin{array}{l}
*++ \\
+*+ \\
++*
\end{array}\right] \\
& \mathcal{C}(\widehat{P})(y)=\left[\begin{array}{lll}
+ & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & +
\end{array}\right] y^{2}-\left[\begin{array}{lll}
+ & 0 & - \\
0 & + & - \\
0 & 0 & *
\end{array}\right] y+\left[\begin{array}{l}
++0 \\
++0 \\
++0
\end{array}\right]
\end{aligned}
$$

More ingredients for a subtraction-(essentially)-free algorithm: - Choosing parameters: $\alpha=0, \beta$ from problem magnitudes

> Triplets for CR — simpler (stochastic) case

$$
\operatorname{triplet}\left(\hat{B}_{k}\right)=\left(\operatorname{offdiag}\left(\hat{B}_{k}\right), \underline{1}, C_{k} B_{k} A_{0} \underline{\mathbf{1}}\right)
$$

- Don't compute solution $R=C_{0} \hat{B}_{k}^{-1}$ to the matrix equation, but invariant pair $U=\hat{B}_{k}, X=\hat{B}_{k}^{-1} R \hat{B}_{k}$

References

A Da Silva Soares Fluid queues - building upon the analysis with QBD processes PhD thesis, Université Libre de Bruxelles 2005
国 G Latouche, GT Nguyen The morphing of fluid queues into Markov-modulated Brownian motion arXiv:1311.3359

圆 JG Xue, SF Xu, RC Li Accurate solutions of M-matrix algebraic Riccati equations. Numer Math 2012
3 GT Nguyen, F Poloni Componentwise accurate fluid queue computations using doubling algorithms In preparation

