Triplet representations for matrix equations in queuing theory <u>Federico Poloni (U of Pisa, fpoloni@di.unipi.it)</u> — Joint work with Giang T. Nguyen (U of Adelaide)

Our problem

Markov-modulated fluid queues and Brownian motion: liquid in an infinite buffer; in- and out-flow (and possibly BM variance) depend on environment state (continuous-time Markov chain)

First-order case: doubling algorithm

- Idea Compute stable modes from $\lim_{t\to\infty} \exp(At)$, via a matrix-pencil version of scaling and squaring
- 1. First approximation via Padé ("continuous to discrete") $\exp(tx) \approx C(x) = (1 + \beta x)(1 - \alpha x)^{-1}$
- 2. Squaring, representing intermediate matrices implicitly What we add to this case:

Triplets

Explicit triplets for the inversions \implies subtraction-free algorithm triplet $(I - G_k H_k) = (\text{offdiag}(G_k H_k), \underline{\mathbf{1}}, E_k \underline{\mathbf{1}} + G_k F_k \underline{\mathbf{1}})$

time

Stationary measure for level x: $p(x) \in \mathbb{R}^{1 \times n}$ satisfying a BVP

 $\ddot{p}V - \dot{p}D + Q = 0 + boundary cond'ns at 0 and \infty$

V: diagonal with $v_{ii} \ge 0$

D: diagonal with mixed-sign d_{ii}

Q: continuous-time Markov chain, $Q\mathbf{1} = 0$, offdiag $(Q) \ge 0$

Key to find it: left stable invariant pair, $X^2UV - XUD + UQ = 0$ U (hopefully ≥ 0) "projection", X square containing eigenvalues of the problem in the (open) left half-plane

Accuracy goal

Our aim solving the problem with componentwise accuracy: $|M - \tilde{M}| \leq \varepsilon M$ for computed quantity $M \geq 0$ Inequality and $|\cdot|$ to hold entrywise, even on very small entries Problem Subtractive cancellation \rightarrow loss of significant digits $triplet(I - H_kG_k) = (offdiag(H_kG_k), \underline{1}, F_k\underline{1} + H_kE_k\underline{1})$

No need to get them back from the matrix entries

Error analysis

Componentwise accurate $U \ge 0$ and triplet representation for X:

$$|U - \tilde{U}| \leqslant c \mathbf{u} U,$$
 same for X

Coefficient c grows: Inearly with $1 - \rho(\mathcal{C}(X))$ (distance to instability) Cubically (upper bound, linear in practice) with dimension n

Second-order case: cyclic reduction

Base algorithm (from [Latouche, Nguyen]):
1. continuous-to-discrete transformation y = C(x)
2. Cyclic reduction (CR) – classical doubling-type algorithm for quadratic problems

Solution Avoid all the subtractions!

Triplet representations

An M-matrix A can be recovered from: • its off-diagonal part, offdiag(A), and • v > 0, $w \ge 0$ such that Av = w

Example 1

 $\begin{bmatrix} 1 & -1 \\ -1 & 1+\varepsilon \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix}$

Values in red (offdiag(A), v, w) uniquely determine the matrix

With a triplet representation, one can run subtraction-free Gaussian elimination on A (*GTH-like algorithm*): solves systems with componentwise error $O(n^3\mathbf{u})$. No condition number!

Matr	ix ill-co	nditioned	Triplet	well-conditioned	<u>∧</u> _1
entrie	κ_{o}	$_{cw}(A)$ u	repres	$O(n^3\mathbf{u})$	

Problems

Not subtraction-free — signs are simply wrong for that
 Infinite eigenvalues from zeros in V complicate convergence
 Solution: shift technique/order reduction. With correct choices and parameters, fixes both issues at the same time
 Infinite eigenvalues deflated automatically

$P(x) = \begin{bmatrix} + 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x^2 - $	$\begin{bmatrix} * & 0 & 0 \\ 0 & + & 0 \\ 0 & 0 & - \end{bmatrix} x + \begin{bmatrix} * & + & + \\ + & * & + \\ + & + & * \end{bmatrix}$
$\widehat{P}(x) = \begin{bmatrix} + & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & + \end{bmatrix} x^2 - $	$\begin{bmatrix} * & 0 & - \\ 0 & + & - \\ 0 & 0 & - \end{bmatrix} x + \begin{bmatrix} * & + & + \\ + & * & + \\ + & + & * \end{bmatrix}$
$\mathcal{C}(\widehat{P})(y) = \begin{bmatrix} + & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & + \end{bmatrix} y^2 - $	$ \begin{bmatrix} + & 0 & - \\ 0 & + & - \\ 0 & 0 & * \end{bmatrix} y + \begin{bmatrix} + & + & 0 \\ + & + & 0 \\ + & + & 0 \end{bmatrix} $

More ingredients for a subtraction-(essentially)-free algorithm:

The first-order case

Case V = 0 more studied. Formulated equivalently as nonsymmetric algebraic Riccati equation. Best class of algorithms: doubling [Xue, Xu, Li] gave perturbation bound, highlighted need for triplets

• Choosing parameters: $\alpha = 0$, β from problem magnitudes

Triplets for CR — simpler (stochastic) case
triplet(
$$\hat{B}_k$$
) = (offdiag(\hat{B}_k), $\underline{\mathbf{1}}$, $C_k B_k A_0 \underline{\mathbf{1}}$)
> Don't compute solution $R = C_0 \hat{B}_k^{-1}$ to the matrix equation, but
invariant pair $U = \hat{B}_k$, $X = \hat{B}_k^{-1} R \hat{B}_k$

References

A Da Silva Soares Fluid queues — building upon the analysis with QBD processes PhD thesis, Université Libre de Bruxelles 2005

G Latouche, GT Nguyen The morphing of fluid queues into Markov-modulated Brownian motion arXiv:1311.3359 ■ JG Xue, SF Xu, RC Li Accurate solutions of M-matrix algebraic Riccati equations. Numer Math 2012

GT Nguyen, F Poloni Componentwise accurate fluid queue computations using doubling algorithms In preparation