Model estimation through matrix equations in financial econometrics

Federico Poloni ${ }^{1}$
Joint work with Giacomo Sbrana ${ }^{2}$
${ }^{1}$ Technische Universität Berlin (A. Von Humboldt postdoctoral fellow)
${ }^{2}$ Rouen Business School
When Probability Meets Computation
Varese, June 2012

Last November, I received an e-mail message from a researcher in Econometrics looking for help with some matrix equations.

We spent some time trying to understand each other's language. . .

Last November, I received an e-mail message from a researcher in Econometrics looking for help with some matrix equations.

We spent some time trying to understand each other's language. . .

Scalar GARCH

A $\operatorname{GARCH}(1,1)$ model is a stochastic time series y_{t} such that

- $y_{t}=h_{t}^{1 / 2} \epsilon_{t}$, where ϵ_{t} is IID "noise" with mean 0 and variance 1
- h_{t} depends linearly on y_{t-1}^{2} and h_{t-1} :

$$
h_{t}=c+a y_{t-1}^{2}+b h_{t-1}
$$

- $a+b \leq 1$

Popular choice to model stock market volatility [Engle, '82], [Bollerslev, '86]

Estimation problem

Given a large number of observations, estimate the parameters c, a, b [Francq, Zakoïan, book '10]

Example

Figure: Example $\operatorname{GARCH}(1,1)$ data

Multivariate GARCH

Different possible generalizations.
Simplest one: every entry of the variance H_{t} may depend linearly on every entry of H_{t-1} and every $\left(y_{t-1}\right)_{i}\left(y_{t-1}\right)_{j}$

Vectorization: a tool to express this

$$
y_{t} y_{t}^{T} \mapsto x_{t}=\left[\begin{array}{l}
y_{1} y_{1} \\
y_{1} y_{2} \\
y_{1} y_{3} \\
y_{2} y_{2} \\
y_{2} y_{3} \\
y_{3} y_{3}
\end{array}\right], \quad H_{t}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \mapsto h_{t}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\right]
$$

Multivariate GARCH

$$
h_{t}=c+A x_{t-1}+B h_{t-1}
$$

Multivariate GARCH

A multivariate $\operatorname{GARCH}(1,1)$ model is a time series y_{t} of $d \times 1$ vectors such that

- $y_{t}=H_{t}^{1 / 2} \epsilon_{t}$, where ϵ_{t} is IID "noise" with mean 0 and variance I_{d}
- H_{t} is an affine linear function of H_{t-1} and $y_{t-1} y_{t-1}^{T}$. In formulas

$$
h_{t}=c+A x_{t-1}+B h_{t-1}
$$

- all the eigenvalues of $A+B$ are in the unit circle

Estimation problem

Given a large number of observations, estimate the parameters c, A, B
[Francq, Zakoïan, book '10]

Example

Figure: Example $\operatorname{GARCH}(1,1)$ data

Quasi-Maximum Likelihood

Most popular choice for estimating c, A, B : Quasi-Maximum Likelihood
Given a guess $\hat{c}, \hat{A}, \hat{B}$, we can compute \hat{H}_{t} at each time and then the likelihood ℓ_{t} that a Gaussian $N\left(0, H_{t}\right)$ generates the observed y_{t}

Remark the noise is not assumed Gaussian in general, so this is an approximation

A good guess for the parameters is

$$
\max _{\hat{c}, \hat{A}, \hat{B}} \prod_{t=1}^{n} \ell_{t}
$$

(but it is not clear how to compute it)

Estimating a GARCH through ML

Most popular choice for estimating c, A, B : Quasi-Maximum Likelihood

Take likelihood function $L(c, A, B)$ and feed it to a "black-box" optimizer

- optimizer proceeds blindly, no knowledge of function expression
- difficult optimization problem: nonconvex, high-dimensional
- the code is delicate: step-size control, numerical derivatives...
- slow, big and scary

Our hope Finding a more manageable estimator

Estimating a GARCH through ML

Most popular choice for estimating c, A, B : Quasi-Maximum Likelihood

Take likelihood function $L(c, A, B)$ and feed it to a "black-box" optimizer

- optimizer proceeds blindly, no knowledge of function expression
- difficult optimization problem: nonconvex, high-dimensional
- the code is delicate: step-size control, numerical derivatives...
- slow, big and scary

Our hope Finding a more manageable estimator

Estimating c and $A+B$

Key property $y_{t} y_{t}^{T}$ is "almost" H_{t}, since $H_{t}=\operatorname{var}\left[y_{t}\right]$
More precisely:
$\xi_{t}:=x_{t}-h_{t}$ is an MDS, i.e., $\mathbb{E}\left[\xi_{t}\right]=0$ independently of everything that happens up to $t-1$

$$
x_{t}=\xi_{t}+c+(A+B) x_{t-1}-B \xi_{t-1}
$$

Yule-Walker-type formulas

If we compute autocorrelations $M_{k}=\mathbb{E}\left[\left(x_{t}-\mathbb{E}[x]\right)\left(x_{t-k}-\mathbb{E}[x]\right)^{T}\right]$,

$$
M_{k+1}=(A+B) M_{k} \quad k \geq 1
$$

Autocorrelations are easily estimated using sample autocorrelations
$\hat{M}_{k}=\frac{1}{n} \sum_{t=1}^{n} x_{t+k} x_{t}^{T}$. From them we can get $A+B$ and c.

Moving average

Now we use the moving average vector

$$
j_{t}:=x_{t}-(A+B) x_{t-1}-c=\xi_{t}-B \xi_{t-1}
$$

(the second form is obtained using the formulas for h_{t})
We get, with $\Phi:=A+B$ and $\Sigma=\operatorname{Var}\left(\xi_{t}\right)$

$$
\begin{aligned}
& \Gamma_{0}=\mathbb{E}\left[j_{t} j_{t}^{T}\right]=M_{0}-M_{1} \Phi^{T}-\Phi M_{1}^{T}+\Phi M_{0} \Phi^{T}=\Sigma+B \Sigma B^{T} \\
& \Gamma_{1}=\mathbb{E}\left[j_{t+1} j_{t}^{T}\right]=M_{1}-\Phi M_{0}=-B \Sigma
\end{aligned}
$$

Matrix equations

$$
\begin{aligned}
& \Gamma_{0}=\mathbb{E}\left[j_{t} j_{t}^{T}\right]=M_{0}-M_{1} \Phi^{T}-\Phi M_{1}^{T}+\Phi M_{0} \Phi^{T}=\Sigma+B \Sigma B^{T} \\
& \Gamma_{1}=\mathbb{E}\left[j_{t+1} j_{t}^{T}\right]=M_{1}-\Phi M_{0}=-B \Sigma
\end{aligned}
$$

We can eliminate either Σ or B, getting

$$
\begin{gather*}
\Gamma_{1}^{T}-\Gamma_{0} B^{T}+\Gamma_{1}\left(B^{T}\right)^{2}=0 \tag{P}\\
\Gamma_{0}=\Sigma+\Gamma_{1} \Sigma^{-1} \Gamma_{1}^{T} \tag{R}
\end{gather*}
$$

(P) is a palindromic matrix equation [Mackey et al '05, Gohberg et al book '09]
(R) is a "baby-Riccati" nonlinear matrix equation (NME) [Engwerda et al '93, Meini '02, + others]

A closed-form estimator

$$
\begin{equation*}
\Gamma_{1}^{T}-\Gamma_{0} B^{T}+\Gamma_{1}\left(B^{T}\right)^{2}=0 \tag{P}
\end{equation*}
$$

We can solve (P) via linearization [...] or cyclic reduction/doubling [...]

The complete procedure

- Compute a few of the first sample autocorrelations \hat{M}_{k}
- Estimate $\widehat{A+B}$ and \hat{c} using Yule-Walker results (how?)
- Estimate $\hat{\Gamma}_{0}$ and $\hat{\Gamma}_{1}$, autocorrelations of $j_{t}=x_{t}-(\widehat{A+B}) x_{t-1}-\hat{c}$
- Solve the matrix equation (P) to get \hat{B}

Suggested by [Linton, Kristensen '06] for the univariate GARCH, where (P) is simply a quadratic equation
We can now generalize it to the more interesting multivariate case

Solving matrix equations (when it is possible)

$$
\begin{gather*}
\Gamma_{1}^{T}-\Gamma_{0} B^{T}+\Gamma_{1}\left(B^{T}\right)^{2}=0 \tag{P}\\
\Gamma_{0}=\Sigma+\Gamma_{1} \Sigma^{-1} \Gamma_{1}^{T} . \tag{R}
\end{gather*}
$$

Solvability theory, putting together mostly known results for (R):

- If $P(\lambda)=\Gamma_{1}^{\top} \lambda^{-1}+\Gamma_{0}+\Gamma_{1} \lambda \succeq 0$ on the unit circle, a unique stable $B(\rho(B) \leq 1)$ exists
- Otherwise, no pair (B, Σ) with $\Sigma \succeq 0$ exists

If our model holds, B exists (but often eigenvalues close to the unit circle).

Problem

Γ_{0}, Γ_{1} come from the data and must be estimated.
If large errors, (P) and (R) are perturbed to unsolvable equations

Example

Work in progress (with T. Brüll, C. Schröder): find small perturbations to Γ_{0}, Γ_{1} which "move the lines up".

So, does it really work?

Yes, but still not as accurate as MLE. Weak point: the convergence $\hat{M}_{k} \rightarrow M_{k}$ is not that fast

However, much faster than MLE. Suggested uses:

- use it as a starting value for optimization in MLE...
- ... or use an iterative feasible least-squares procedure to refine it Almost finished: asymptotic consistency/normality properties of LS

Idea of feasible GLS

Method to refine an estimate $\hat{c}, \hat{A}, \hat{B}$
$x_{t}=h_{t}+($ error $) ; h_{t}=f\left(c, A, B, x_{t-1}, h_{t-1}\right)$ linear in c, A, B

$$
\min _{c, A, B} \sum\left\|f\left(c, A, B, x_{t-1}, h_{t-1}\right)-x_{t}\right\|^{2}
$$

Problems:

- We do not know h_{t-1} in the formula

Replace it by \hat{h}_{t-1}

- Variance of the error varies (it is h_{t}), least squares methods start from the assumption that it is fixed Rescale it with \hat{h}_{t}
We run a few iterations of this method and check which one has the largest likelihood

Simulated (Monte-Carlo) results

Only some preliminary results. . .

- 500, 1000 or 5000 observations
- $\rho(A+B)$ up to 0.9
- :) Speedup in QML around 30% for sufficiently hard experiments
- :) In some cases, convergence problems in QML with our starting values - we are trying to understand this
- © Closed form estimator + 3-4 iterations of FGLS: accuracy on par with QML, much faster, simple to code.

Conclusions

- New application for matrix equations and structured linear algebra
- Correct estimations are crucial to assess risk in economic models

Conclusions

- New application for matrix equations and structured linear algebra
- Correct estimations are crucial to assess risk in economic models
- We help practitioners make the same errors, but much faster!

Thanks for your attention
And a happy retirement to Guy!

Conclusions

- New application for matrix equations and structured linear algebra
- Correct estimations are crucial to assess risk in economic models
- We help practitioners make the same errors, but much faster!

Thanks for your attention
And a happy retirement to Guy!

- ???
- Profit!

