The benefits of changing identity

in Lagrangian subspaces and doubling algorithms

V. Mehrmann ${ }^{1}$ Federico Poloni ${ }^{1,2}$
${ }^{1}$ Technische Universität Berlin, Institut für Mathematik
${ }^{2}$ Supported by the A. von Humboldt Foundation

Workshop on Matrix Equations and Tensor Techniques Aachen, 21-22 November 2011

Lagrangian subspaces

Definition

A subspace $\mathcal{U}=\operatorname{lm} U$ of $\mathbb{C}^{2 n}$ is Lagrangian if it has dimension n and

$$
U^{*} \mathcal{J}_{2 n} U=0 \quad \mathcal{J}_{2 n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]
$$

- Property of the subspace, not of the basis: can post-multiply $U \rightarrow U M$
- They arise naturally as stable invariant subspaces of Hamiltonian and symplectic problems
- Central role in control

Dealing with Lagrangian subspaces

Problem: find a (Lagrangian) invariant subspace of ...
but first: represent suitably a Lagrangian subspace, operate on it and return it to the user preserving structure

Subspace \mathcal{U} often represented as range of (full column rank) $\mathcal{U} \ldots$
... but this is not unique: $\operatorname{Im} U=\operatorname{Im} U M$ for any M nonsingular

Graph bases and Riccati equations

One of the first choices [Willems, '71] : graph basis

$$
\mathcal{U}=\operatorname{lm}\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]=\operatorname{lm}\left[\begin{array}{c}
I \\
X
\end{array}\right] \quad X=U_{2} U_{1}^{-1}
$$

Transforms invariant subspace problems into algebraic Riccati equations

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
I_{n} \\
X
\end{array}\right]=\left[\begin{array}{l}
I_{n} \\
X
\end{array}\right] F \quad \Longleftrightarrow \quad X B X+X A-D X-C=0
$$

() Easy to ensure Lagrangianity: \mathcal{U} Lagrangian $\Leftrightarrow X$ Hermitian
) Not all subspaces well represented: what about these?

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1+\varepsilon \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Orthogonal bases

Natural solution: orthogonal basis

$$
\mathcal{U}=\operatorname{lm}\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]
$$

with orthogonal columns
() All subspaces representable
() Very stable, no element growth
() Computationally more expensive
() Too many parameters: Lagrangianity $\Leftrightarrow Q_{1}^{*} Q_{2}=Q_{2}^{*} Q_{1}$

Easily lost through numerical computation, difficult to enforce explicitly
Loss of Lagrangianity is a serious problem, e.g. in Laub Trick [Laub, '79]

Trying to save the Riccati approach

A "folklore result": in some cases useful to switch to $\left[\begin{array}{l}Y \\ 1\end{array}\right]$ (so $Y=X^{-1}$)

Dual ARE

$$
X B X+X A-D X-C=0 \quad \Longrightarrow \quad B+A Y-Y D-Y C Y=0
$$

But still both approaches can fail: e.g.,
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]$

Neither $\left[\begin{array}{l}1 \\ X\end{array}\right]$ nor $\left[\begin{array}{l}Y \\ 1\end{array}\right]$ work
Idea: The identity that we are looking for is already there, in rows 1 and 4 !

Permuted graph bases

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 0 \\
* & * \\
* & * \\
0 & 1
\end{array}\right]} \\
& \text { We look for bases with an identity submatrix spread } \\
& \text { along different rows } \\
& =\Pi\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
* & * \\
* & *
\end{array}\right] \\
& \text { Equivalently: keep identity on top, but premultiply } \\
& \text { with a permutation matrix }
\end{aligned}
$$

But permutations are not the right tool here: want to preserve Lagrangianity

The right thing: symplectic swap matrices
Symplectic row swap matrices: those that act (separately) as either

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or } \mathcal{J}_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

on every pair of indices $(i, n+i)$
Examples:

$$
I_{2 n}=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & I_{n}
\end{array}\right] \quad \mathcal{J}_{2 n}=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]
$$

- Can only swap row i with $n+i$
- There's 2^{n} of them
- All preserve Lagrangianity, so $\Pi\left[\begin{array}{c}1 \\ x\end{array}\right]$ Lagrangian $\Leftrightarrow X$ Hermitian

2×2 case

$$
U=\begin{array}{|c|}
\hline \frac{1}{\mid 2} \\
\hline \hline \hline 3 \\
\hline \hline 4 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { If } \frac{\square}{\square} \text { well-conditioned } \Rightarrow U \cdot \operatorname{inv}\binom{\hline \hline 2}{\hline 2}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
* & * \\
* & *
\end{array}\right]
\end{aligned}
$$

2×2 case

What if none of them works? E.g., $\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$? Not Lagrangian!

How good are row swaps?

$\mathcal{U}=\operatorname{Im} U$ has a permuted graph basis with a prescribed Π iff some subset of n rows of U is linearly independent

$$
U=\Pi\left[\begin{array}{l}
Y \\
Z
\end{array}\right] \sim \Pi\left[\begin{array}{c}
I \\
Z Y^{-1}
\end{array}\right] \stackrel{\text { def }}{=} \Pi\left[\begin{array}{c}
I \\
X
\end{array}\right]
$$

Theorem

For each Lagrangian \mathcal{U} there's a Π such that Y is invertible...
Follows easily from a result on symplectic matrices [Dopico, Johnson '06]
Theorem [Mehrmann, P., preprint]
. . . moreover, there's one with X entrywise small:

$$
\left|(X)_{i j}\right| \leq \begin{cases}1 & \text { if } i=j \\ \sqrt{2} & \text { otherwise }\end{cases}
$$

Geometrical interpretation

In geometrical terms: the 2^{n} maps

$$
f_{\Pi}: X \text { Hermitian and bounded } \mapsto \operatorname{Im} \Pi\left[\begin{array}{c}
I \\
X
\end{array}\right]
$$

are an atlas for the manifold of Lagrangian subspaces
For each subspace, we can find Π giving "tame" structure-preserving basis

Image: © Wikimedia

Unstructured case

Similar, unstructured version known for a generic subspace:
Theorem [Knuth, \approx '84??]
For every n-dimensional subspace $\mathcal{U} \subseteq \mathbb{C}^{n+m}$, there are a permutation matrix Π and an $X \in \mathbb{C}^{m \times n}$ with $\left|x_{i, j}\right| \leq 1$ for all i, j such that

$$
\mathcal{U}=\operatorname{Im} \Pi\left[\begin{array}{l}
I_{n} \\
X
\end{array}\right]
$$

Connected to rank revealing QR: existing work by Knuth, C.-T. Pan, Gu-Eisenstat, Goreinov et al. . .

Key word: Plücker coordinates

Sketch of the proof

$$
U=\Pi\left[\begin{array}{c}
Y_{\Pi} \\
Z_{\Pi}
\end{array}\right] \sim \Pi\left[\begin{array}{c}
I \\
Z_{\Pi} Y_{\Pi}^{-1}
\end{array}\right] \stackrel{\text { def }}{=} \Pi\left[\begin{array}{c}
I \\
X_{\Pi}
\end{array}\right]
$$

Different Π give different Y_{Π}; take R so that $\left|\operatorname{det} Y_{R}\right|$ maximal

Cramer's rule on $X_{R}=Z_{R} Y_{R}^{-1}$ gives

$$
\left|x_{i i}\right|=\left|\frac{\operatorname{det} Y_{Q}}{\operatorname{det} Y_{R}}\right| \leq 1
$$

Can only swap i with $n+i \Rightarrow$ this works only for diagonal elements $x_{i i}$ But similarly

$$
\left|\operatorname{det}\left[\begin{array}{ll}
x_{i, i} & x_{i, j} \\
\overline{x_{i, j}} & x_{j, j}
\end{array}\right]\right|=\left|\frac{\operatorname{det} Y_{Q}}{\operatorname{det} Y_{R}}\right| \leq 1 \quad \Rightarrow \quad\left|x_{i, j}\right| \leq \sqrt{2}
$$

Computing a good Π

The proof can be turned into a "greedy" algorithm: given U s.t. Im $U=\mathcal{U}$,
(1) choose an admissible Π
(2) compute basis $\Pi\left[\begin{array}{l}1 \\ X\end{array}\right]$
(3) if $\left|x_{i, i}\right|>1$, update Π with a row swap to enlarge $\operatorname{det} Y_{\Pi}$, goto 2
(c) if $\left|x_{i, j}\right|>\sqrt{2}$, two row swaps, goto 2

- Best to work with thresholds $S>1, T>\sqrt{2}$
- Ends with a matrix X with $\left|(X)_{i j}\right| \leq \begin{cases}S & \text { if } i=j \\ T & \text { otherwise }\end{cases}$
- Every update of X is essentially a rank- 1 update, $O\left(n^{2}\right)$
- Can be made very robust

Similar (less robust) algorithm for the unstructured case: [Goreinov et al., '08]
Applications?

Applications

Several different problems can be "reshaped" in order to use this theorem

Maslow's law
"If all you have is a hammer, everything looks like a nail"

Applications

Several different problems can be "reshaped" in order to use this theorem

Maslow's law
"If all you have is a hammer, everything looks like a nail"

First, a pencil and a nail are very similar objects...

Pencils and subspaces

Eigenvalues and right invariant subspaces of a pencil: well defined up to

$$
s E-A \sim s(M E)-M A \quad \text { "right-handed equivalence" }
$$

Or: they depend on the subspace $\operatorname{Im}\left[\begin{array}{l}E^{*} \\ A^{*}\end{array}\right]$, not on the matrix $\left[\begin{array}{l}E^{*} \\ A^{*}\end{array}\right]$ Results

Structured pencils

Symplectic pencils

$$
E \mathcal{J}_{2 n} E^{*}=A \mathcal{J}_{2 n} A^{*} \quad \Longleftrightarrow \quad\left[\begin{array}{ll}
E & A
\end{array}\right]\left[\begin{array}{cc}
\mathcal{J}_{2 n} & 0 \\
0 & -\mathcal{J}_{2 n}
\end{array}\right]\left[\begin{array}{c}
E^{*} \\
A^{*}
\end{array}\right]=0
$$

Hamiltonian pencils

$$
E \mathcal{J}_{2 n} A^{*}=-A \mathcal{J}_{2 n} E^{*} \quad \Longleftrightarrow \quad\left[\begin{array}{ll}
E & A
\end{array}\right]\left[\begin{array}{cc}
0 & \mathcal{J}_{2 n} \\
\mathcal{J}_{2 n} & 0
\end{array}\right]\left[\begin{array}{c}
E^{*} \\
A^{*}
\end{array}\right]=0
$$

By exchanging blocks, we can transform the two matrices in red into $\mathcal{J}_{4 n}$ Up to some reordering, $\operatorname{Im}\left[\begin{array}{c}\mathcal{A}^{*}\end{array}\right]$ is Lagrangian!
Our theory can be used to give tame, structure-preserving representations...

Bounded representations of symplectic pencils

Theorem

Every symplectic pencil is (right-handed-)equivalent to one in the form

$$
s\left[\begin{array}{cc}
I_{n} & X_{21} \\
0 & X_{22}
\end{array}\right] \Pi_{1}-\left[\begin{array}{ll}
X_{11} & 0 \\
X_{21} & I_{n}
\end{array}\right] \Pi_{2}
$$

with Π_{i} symplectic swap matrices, $X=\left[\begin{array}{cc}X_{11} & x_{12} \\ X_{21} & X_{22}\end{array}\right]$ bounded Hermitian
(Without the parts in red, well known)

Bounded representations of Hamiltonian pencils

Theorem

Every Hamiltonian pencil is (right-handed-)equivalent to one in the form

$$
s\left[\begin{array}{ll}
E_{1} & E_{2}
\end{array}\right]-\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]
$$

with

$$
\left[\begin{array}{ll}
E_{1} & A_{2}
\end{array}\right]=\left[\begin{array}{ll}
l & X_{11} \\
0 & X_{21}
\end{array}\right] \Pi_{1}, \quad\left[\begin{array}{ll}
-A_{1} & E_{2}
\end{array}\right]=\left[\begin{array}{ll}
X_{12} & 0 \\
X_{22} & I
\end{array}\right] \Pi_{2},
$$

and $X=\left[\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right]$ bounded Hermitian
Idea: start from sl $-H$, you can swap vectors between the "outer" blocks and between the "inner" ones

Deflating R in general-form control problems

In control problems, originally an "extended" $(2 n+m) \times(2 n+m)$ pencil Need deflation to get a Hamiltonian matrix/pencil

$$
s\left[\begin{array}{ccc}
0 & I & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{ccc}
0 & A & B \\
A^{*} & Q & S \\
B^{*} & S^{*} & R
\end{array}\right] \Longrightarrow s\left[\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{|cc}
\mathcal{H} & 0 \\
* & 0 \\
* & I
\end{array}\right]
$$

When R ill-conditioned or singular, trouble Solution: allow identities to move!

$$
s\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{ccc}
0 & A & B \\
A^{*} & Q & S \\
B^{*} & S^{*} & R
\end{array}\right] \Longrightarrow s\left[\begin{array}{cc}
\mathcal{H}_{1} & 0 \\
* & 0 \\
* & 0
\end{array}\right]-\left[\begin{array}{ll}
\mathcal{H}_{2} & 0 \\
* & 0 \\
* & 1
\end{array}\right]
$$

$s \mathcal{H}_{1}-\mathcal{H}_{2}$ Hamiltonian pencil (bounded as in the theorem)

Doubling algorithms - I

Doubling algorithms compute invariant subspaces of Hamiltonian / symplectic pencils

Key operation

Given $A-s E$, find full-rank $\left[\begin{array}{ll}C & S\end{array}\right]$ such that $\left[\begin{array}{ll}C & S\end{array}\right]\left[\begin{array}{l}A \\ E\end{array}\right]=0$
Two main strategies:

- QR-factorize $\left[\begin{array}{c}A \\ E\end{array}\right]$ and construct C, S from Q
- permute and invert a block to reduce to $\left[\begin{array}{c}A \\ E\end{array}\right]=\left[\begin{array}{c}1 \\ x\end{array}\right]$; then use

$$
\left[\begin{array}{ll}
-X & I
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=0
$$

Doubling algorithms - II

- QR-factorize $\left[\begin{array}{c}A \\ E\end{array}\right]$: inverse-free matrix sign/disc method [Benner, '96], [Benner, Byers '06] , [Bai et al., '97]
- enforce identity: structure-preserving doubling algorithm (SDA) [Anderson, '78] , [Chu et al., '04]

	QR-based	SDA
$O\left(n^{3}\right) ?$	Yes	Yes
Structure-preserving?	No way!	Yes
Stable?	Yes	No way!

This looks familiar. . . again, it's hammer time!

An attempt at a new doubling algorithm

Doubling + permuted graph bases

(1) Compute bounded permuted graph basis $\left[\begin{array}{l}E \\ A\end{array}\right]=\tilde{\Pi}\left[\begin{array}{l}1 \\ \tilde{x}\end{array}\right]$
(2) $[c s]=\left[-\widetilde{x} \|^{\prime}\right] \tilde{\Pi}^{-1}$

- Use C, S to perform a doubling step
- Compute bounded permuted graph basis of $\left[\begin{array}{c}E_{A^{*}}^{*}\end{array}\right]=\Pi\left[\begin{array}{c}1 \\ x\end{array}\right]$
- Repeat until convergence

An attempt at a new doubling algorithm

Doubling + permuted graph bases

(- Compute bounded permuted graph basis $\left[\begin{array}{l}E \\ A\end{array}\right]=\tilde{\Pi}\left[\frac{1}{\tilde{x}}\right]$
(c) $[c s]=\left[-\widetilde{x}_{l}\right] \widetilde{\Pi}^{-1}$ (unstructured version)

- Use C, S to perform a doubling step
- Compute bounded permuted graph basis of $\left[\begin{array}{c}E_{A^{*}}^{*}\end{array}\right]=\Pi\left[\begin{array}{c}1 \\ X\end{array}\right]$
- Enforce Lagrangianity: $X \leftarrow \frac{1}{2}\left(X+X^{*}\right)$
- Repeat until convergence

Still not 100% satisfactory: $\left[\begin{array}{l}E \\ A\end{array}\right]$ is not Lagrangian: switch to unstructured arithmetic and then project back

Looking for a compact version of 1-4 using only Hermitian arithmetic Possible in the known special cases (SDA, Cyclic Reduction)
But still, great numerical results...

Figure: Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]

Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]

Now, stability analysis. . .

Stability results

- $\kappa\left(\Pi\left[\begin{array}{l}I \\ X\end{array}\right]\right) \leq C n$, with $\kappa(Z)=\sigma_{\max }(Z) / \sigma_{\min }(Z)$
- Given an initial basis U, can construct $\Pi\left[\begin{array}{c}I \\ Z Y^{-1}\end{array}\right]$ with $\kappa(Y) \leq C n \kappa(U)$

Unfortunately, textbook backward stability analysis not well suited to doubling (or, more generally, matrix squaring):

$$
\text { ??? } \xrightarrow{\text { squaring }}\left[\begin{array}{ll}
0 & \varepsilon \\
0 & 0
\end{array}\right]
$$

Note: 0 not a critical eigenvalue here

How good is this in theory?

	QR-based	SDA	Permuted SDA
$O\left(n^{3}\right) ?$	Yes	Yes	
Structure-preserving?	No way!	Yes	
Stable?	Yes	No way!	

How good is this in theory?

	QR-based	SDA	Permuted SDA
$O\left(n^{3}\right) ?$	Yes	Yes	Kind of
Structure-preserving?	No way!	Yes	Kind of
Stable?	Yes	No way!	Kind of

- $O\left(n^{3}\right)$: Need to bound total number of row swaps Well-studied in the unstructured case In practice $2 n$ row swaps (overall) suffice on all experiments
- Structure-preserving: Would like "fully Hermitian" update formula We haven't nailed it down yet. . .
- Stable: can mimic [Bai et al., '97], but large worst-case constants

Turning those "kind of" into yes looks possible for the first time

Conclusions

- Doubling now competitive with state-of-the-art algorithms for dense control problems (Matlab code soon to be released - contact me for info)
- Recipe to add stability to existing structure-preserving algorithms

Other possible "nail" applications:

- Large scale Riccati and ADI: X (approx) low rank \Rightarrow many determinants (approx) 0
- \mathcal{H}_{∞} control: Riccati with unbounded solutions show up
- "Butterfly" SR/SZ algorithms
- Are you working with symplectic matrices? Maybe your problem looks like a nail, too

Conclusions

- Doubling now competitive with state-of-the-art algorithms for dense control
- Recipe t

Other possibl

- Large sc

Thanks for your attention! Questions?

- \mathcal{H}_{∞} control: Riccati with unbounded solutions show up
- "Butterfly" SR/SZ algorithms
- Are you working with symplectic matrices? Maybe your problem looks like a nail, too

How does it compare to [Mehrmann, Schröder, Watkins '09]?

	QR-based	SDA	Perm-SDA	MehSW
$O\left(n^{3}\right) ?$	Yes	Yes	Kind of	Yes
Structure-preserving?	No way!	Yes	Kind of	Yes?*
Stable?	Yes	No way!	Kind of	Yes?*
BLAS3/Parallel/	Yes	Yes	Kind of	No way!
Communication optimal?				

- *MehSW (essentially: block Schur + Laub trick on every block) uses orthogonal bases and can have the same problems as Laub trick
- Schur-type algorithms not suited for large communication optimal linear algebra - for instance, [Demmel et al., '06] use doubling instead of QR for eigenvalues

Figure: Riccati residual for the 33 CAREX problems in [Chu et al., '07]

Figure: Unstructured pencil backward error for the problems in [Chu et al., '07]

