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Lagrangian subspaces

Definition
A subspace U = ImU of C2n is Lagrangian if it has dimension n and

U∗J2nU = 0 J2n =

[
0 In
−In 0

]

Property of the subspace, not of the basis: can post-multiply U → UM
They arise naturally as stable invariant subspaces of Hamiltonian and
symplectic problems
Central role in control
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Dealing with Lagrangian subspaces

Problem: find a (Lagrangian) invariant subspace of . . .
but first: represent suitably a Lagrangian subspace, operate on it and
return it to the user preserving structure

Subspace U often represented as range of (full column rank) U. . .
. . . but this is not unique: ImU = ImUM for any M nonsingular
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Graph bases and Riccati equations
One of the first choices [Willems, ’71] : graph basis

U = Im
[
U1
U2

]
= Im

[
I
X

]
X = U2U−1

1

Transforms invariant subspace problems into algebraic Riccati equations[
A B
C D

] [
In
X

]
=

[
In
X

]
F ⇐⇒ XBX + XA− DX − C = 0

, Easy to ensure Lagrangianity: U Lagrangian ⇔ X Hermitian
/ Not all subspaces well represented: what about these?

0 0
0 0
1 0
0 1




1 1
1 1+ ε
1 0
0 1
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Orthogonal bases

Natural solution: orthogonal basis

U = Im
[
Q1
Q2

]
with orthogonal columns

, All subspaces representable
, Very stable, no element growth
/ Computationally more expensive
/ Too many parameters: Lagrangianity ⇔ Q∗1Q2 = Q∗2Q1

Easily lost through numerical computation, difficult to enforce explicitly
Loss of Lagrangianity is a serious problem, e.g. in Laub Trick [Laub, ’79]
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Trying to save the Riccati approach

A “folklore result”: in some cases useful to switch to
[ Y

I
]
(so Y = X−1)

Dual ARE

XBX + XA− DX − C = 0 =⇒ B + AY − YD − YCY = 0

But still both approaches can fail: e.g.,


1 0
0 0
0 0
0 1


Neither

[ I
X
]
nor

[ Y
I
]
work

Idea: The identity that we are looking for
is already there, in rows 1 and 4!
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Permuted graph bases


1 0
∗ ∗
∗ ∗
0 1

 We look for bases with an identity submatrix spread
along different rows

= Π


1 0
0 1
∗ ∗
∗ ∗

 Equivalently: keep identity on top, but premultiply
with a permutation matrix

But permutations are not the right tool here: want to preserve Lagrangianity
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The right thing: symplectic swap matrices
Symplectic row swap matrices: those that act (separately) as either

I =
[
1 0
0 1

]
or J2 =

[
0 1
−1 0

]

on every pair of indices (i , n + i)

Examples:

1
1

1
1

−1
1




I2n =

[
In 0
0 In

]
J2n =

[
0 In
−In 0

]

Can only swap row i with n + i
There’s 2n of them
All preserve Lagrangianity, so Π

[ I
X
]
Lagrangian ⇔ X Hermitian
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2× 2 case

U =


1
2
3
4



If 1
2

well-conditioned ⇒ U · inv
(

1
2

)
=


1 0
0 1
∗ ∗
∗ ∗



If 3
4

well-conditioned ⇒ U · inv
(

3
4

)
=


∗ ∗
∗ ∗
1 0
0 1



F. Poloni (TU Berlin) Changing identity 9 / 29



2× 2 case

If 1
4

well-conditioned ⇒ U · inv
(

1
4

)
=


1 0
∗ ∗
∗ ∗
0 1

 = Π


1 0
0 1
∗ ∗
∗ ∗



If 3
2

well-conditioned ⇒ U · inv
(

3
2

)
=


∗ ∗
0 1
1 0
∗ ∗

 = Π


1 0
0 1
∗ ∗
∗ ∗



What if none of them works? E.g.,


1 0
0 0
0 1
0 0

? Not Lagrangian!
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How good are row swaps?
U = ImU has a permuted graph basis with a prescribed Π iff some subset
of n rows of U is linearly independent

U = Π

[
Y
Z

]
∼ Π

[
I

ZY−1

]
def
= Π

[
I
X

]

Theorem
For each Lagrangian U there’s a Π such that Y is invertible. . .

Follows easily from a result on symplectic matrices [Dopico, Johnson ’06]

Theorem [Mehrmann, P., preprint]

. . . moreover, there’s one with X entrywise small:

|(X )ij | ≤
{
1 if i = j√
2 otherwise
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Geometrical interpretation
In geometrical terms: the 2n maps

fΠ : X Hermitian and bounded 7→ ImΠ

[
I
X

]

are an atlas for the manifold of Lagrangian subspaces
For each subspace, we can find Π giving “tame” structure-preserving basis

Image: c©Wikimedia
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Unstructured case

Similar, unstructured version known for a generic subspace:

Theorem [Knuth, ≈’84??]

For every n-dimensional subspace U ⊆ Cn+m, there are a permutation
matrix Π and an X ∈ Cm×n with |xi ,j | ≤ 1 for all i , j such that

U = ImΠ

[
In
X

]

Connected to rank revealing QR: existing work by Knuth, C.-T. Pan,
Gu–Eisenstat, Goreinov et al. . .

Key word: Plücker coordinates
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Sketch of the proof

U = Π

[
YΠ
ZΠ

]
∼ Π

[
I

ZΠY−1
Π

]
def
= Π

[
I

XΠ

]
Different Π give different YΠ ; take R so that |detYR | maximal

Cramer’s rule on XR = ZRY−1
R gives

|xii | =
∣∣∣∣detYQ
detYR

∣∣∣∣ ≤ 1

Can only swap i with n + i ⇒ this works only for diagonal elements xii

But similarly∣∣∣∣∣det
[
xi ,i xi ,j
xi ,j xj,j

]∣∣∣∣∣ =
∣∣∣∣detYQ
detYR

∣∣∣∣ ≤ 1 ⇒ |xi ,j | ≤
√
2
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Computing a good Π

The proof can be turned into a “greedy” algorithm: given U s.t. ImU = U ,

1 choose an admissible Π
2 compute basis Π

[ I
X
]

3 if |xi ,i | > 1, update Π with a row swap to enlarge detYΠ , goto 2
4 if |xi ,j | >

√
2, two row swaps, goto 2

Best to work with thresholds S > 1,T >
√
2

Ends with a matrix X with |(X )ij | ≤
{

S if i = j
T otherwise

Every update of X is essentially a rank-1 update, O(n2)

Can be made very robust

Similar (less robust) algorithm for the unstructured case: [Goreinov et al., ’08]

Applications?
F. Poloni (TU Berlin) Changing identity 15 / 29



Applications

Several different problems can be “reshaped” in order to
use this theorem

Maslow’s law
“If all you have is a hammer, everything looks like a nail”

First, a pencil and a nail are very similar objects. . .
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Pencils and subspaces

Eigenvalues and right invariant subspaces of a pencil: well defined up to

sE − A ∼ s(ME )−MA “right-handed equivalence”

Or: they depend on the subspace Im
[
E ∗
A∗

]
, not on the matrix

[
E ∗
A∗

]
Results
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Structured pencils

Symplectic pencils

EJ2nE ∗ =AJ2nA∗ ⇐⇒
[
E A

] [J2n 0
0 −J2n

] [
E ∗
A∗

]
=0

Hamiltonian pencils

EJ2nA∗ =− AJ2nE ∗ ⇐⇒
[
E A

] [ 0 J2n
J2n 0

] [
E ∗
A∗

]
=0

By exchanging blocks, we can transform the two matrices in red into J4n

Up to some reordering, Im
[ E∗

A∗
]
is Lagrangian!

Our theory can be used to give tame, structure-preserving representations. . .
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Bounded representations of symplectic pencils

Theorem
Every symplectic pencil is (right-handed-)equivalent to one in the form

s
[
In X21
0 X22

]
Π1 −

[
X11 0
X21 In

]
Π2

with Πi symplectic swap matrices, X =
[

X11 X12
X21 X22

]
bounded Hermitian

(Without the parts in red, well known)
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Bounded representations of Hamiltonian pencils

Theorem
Every Hamiltonian pencil is (right-handed-)equivalent to one in the form

s
[
E1 E2

]
−
[
A1 A2

]
with [

E1 A2
]
=

[
I X11
0 X21

]
Π1,

[
−A1 E2

]
=

[
X12 0
X22 I

]
Π2,

and X =
[

X11 X12
X21 X22

]
bounded Hermitian

Idea: start from sI − H, you can swap vectors between the “outer” blocks
and between the “inner” ones
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Deflating R in general-form control problems

In control problems, originally an “extended” (2n + m)× (2n + m) pencil
Need deflation to get a Hamiltonian matrix/pencil

s

 0 I 0
−I 0 0
0 0 0

−
 0 A B

A∗ Q S
B∗ S∗ R

 =⇒ s

 I 0 0
0 I 0
0 0 0

−
 0

0
∗ ∗ I

H


When R ill-conditioned or singular, trouble
Solution: allow identities to move!

s

 0 I 0
−I 0 0
0 0 0

−
 0 A B

A∗ Q S
B∗ S∗ R

 =⇒ s

 0
0

∗ ∗ 0

H1

−
 0

0
∗ ∗ I

H2


sH1 −H2 Hamiltonian pencil (bounded as in the theorem)
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Doubling algorithms – I

Doubling algorithms compute invariant subspaces of Hamiltonian /
symplectic pencils

Key operation

Given A− sE , find full-rank
[
C S

]
such that

[
C S

] [A
E

]
= 0

Two main strategies:
QR-factorize

[ A
E
]
and construct C ,S from Q

permute and invert a block to reduce to
[ A

E
]
=
[ I

X
]
; then use

[
−X I

] [ I
X

]
= 0
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Doubling algorithms – II

QR-factorize
[ A

E
]
: inverse-free matrix sign/disc method [Benner, ’96] ,

[Benner, Byers ’06] , [Bai et al., ’97]

enforce identity: structure-preserving doubling algorithm (SDA)
[Anderson, ’78] , [Chu et al., ’04]

QR-based SDA
O(n3)? Yes Yes

Structure-preserving? No way! Yes
Stable? Yes No way!

This looks familiar. . . again, it’s hammer time!
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An attempt at a new doubling algorithm

Doubling + permuted graph bases
1 Compute bounded permuted graph basis

[ E
A
]
= Π̃

[
I
X̃

]
2 [ C S ] = [−X̃ I ] Π̃−1

(unstructured version)

3 Use C ,S to perform a doubling step
4 Compute bounded permuted graph basis of

[ E∗
A∗
]
= Π

[ I
X
]

5 Enforce Lagrangianity: X ← 1
2(X + X ∗)

6 Repeat until convergence

Still not 100% satisfactory:
[ E

A
]
is not Lagrangian: switch to unstructured

arithmetic and then project back

Looking for a compact version of 1–4 using only Hermitian arithmetic
Possible in the known special cases (SDA, Cyclic Reduction)

But still, great numerical results. . .

F. Poloni (TU Berlin) Changing identity 24 / 29



An attempt at a new doubling algorithm

Doubling + permuted graph bases
1 Compute bounded permuted graph basis

[ E
A
]
= Π̃

[
I
X̃

]
2 [ C S ] = [−X̃ I ] Π̃−1 (unstructured version)
3 Use C ,S to perform a doubling step
4 Compute bounded permuted graph basis of

[ E∗
A∗
]
= Π

[ I
X
]

5 Enforce Lagrangianity: X ← 1
2(X + X ∗)

6 Repeat until convergence

Still not 100% satisfactory:
[ E

A
]
is not Lagrangian: switch to unstructured

arithmetic and then project back

Looking for a compact version of 1–4 using only Hermitian arithmetic
Possible in the known special cases (SDA, Cyclic Reduction)

But still, great numerical results. . .

F. Poloni (TU Berlin) Changing identity 24 / 29



Figure: Relative subspace residual for the 33 CAREX problems in [Chu et al., ’07]
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Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., ’07]
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Now, stability analysis. . .

Stability results
κ(Π

[ I
X
]
) ≤ Cn, with κ(Z ) = σmax(Z )/σmin(Z )

Given an initial basis U, can construct Π
[

I
ZY −1

]
with κ(Y ) ≤ Cnκ(U)

Unfortunately, textbook backward stability analysis not well suited to
doubling (or, more generally, matrix squaring):

[
0 0
0 0

] [
0 0
0 0

]

???

[
0 ε
0 0

]

squaring

squaring

perturb

Note: 0 not a critical eigenvalue here
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How good is this in theory?

QR-based SDA Permuted SDA
O(n3)? Yes Yes

Structure-preserving? No way! Yes
Stable? Yes No way!

O(n3): Need to bound total number of row swaps
Well-studied in the unstructured case
In practice 2n row swaps (overall) suffice on all experiments
Structure-preserving: Would like “fully Hermitian” update formula
We haven’t nailed it down yet. . .
Stable: can mimic [Bai et al., ’97] , but large worst-case constants

Turning those “kind of” into yes looks possible for the first time
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Conclusions

Doubling now competitive with state-of-the-art algorithms for dense
control problems
(Matlab code soon to be released — contact me for info)
Recipe to add stability to existing structure-preserving algorithms

Other possible “nail” applications:
Large scale Riccati and ADI:
X (approx) low rank ⇒ many determinants (approx) 0
H∞ control: Riccati with unbounded solutions show up
“Butterfly” SR/SZ algorithms
Are you working with symplectic matrices?
Maybe your problem looks like a nail, too

Thanks for your attention! Questions?
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How does it compare to [Mehrmann, Schröder, Watkins ’09] ?

QR-based SDA Perm-SDA MehSW
O(n3)? Yes Yes Kind of Yes

Structure-preserving? No way! Yes Kind of Yes?∗

Stable? Yes No way! Kind of Yes?∗

BLAS3/Parallel/
Communication optimal? Yes Yes Kind of No way!

∗MehSW (essentially: block Schur + Laub trick on every block) uses
orthogonal bases and can have the same problems as Laub trick
Schur-type algorithms not suited for large communication optimal
linear algebra — for instance, [Demmel et al., ’06] use doubling instead
of QR for eigenvalues
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Figure: Riccati residual for the 33 CAREX problems in [Chu et al., ’07]
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Figure: Unstructured pencil backward error for the problems in [Chu et al., ’07]
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