The benefits of changing identity in Lagrangian subspaces and doubling algorithms

V. Mehrmann¹ <u>Federico Poloni^{1,2}</u>

¹Technische Universität Berlin, Institut für Mathematik ²Supported by the A. von Humboldt Foundation

Workshop on Matrix Equations and Tensor Techniques Aachen, 21–22 November 2011

Lagrangian subspaces

Definition

A subspace $\mathcal{U} = \operatorname{Im} \mathcal{U}$ of \mathbb{C}^{2n} is Lagrangian if it has dimension n and

$$U^* \mathcal{J}_{2n} U = 0 \qquad \qquad \mathcal{J}_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

- Property of the subspace, not of the basis: can post-multiply U
 ightarrow UM
- They arise naturally as stable invariant subspaces of Hamiltonian and symplectic problems
- Central role in control

Dealing with Lagrangian subspaces

Problem: find a (Lagrangian) invariant subspace of ... but first: represent suitably a Lagrangian subspace, operate on it and return it to the user preserving structure

Subspace U often represented as range of (full column rank) U... ...but this is not unique: Im U = Im UM for any M nonsingular

Graph bases and Riccati equations

One of the first choices [Willems, '71] : graph basis

$$\mathcal{U} = \operatorname{Im} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \operatorname{Im} \begin{bmatrix} I \\ X \end{bmatrix} \qquad \qquad X = U_2 U_1^{-1}$$

Transforms invariant subspace problems into algebraic Riccati equations

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_n \\ X \end{bmatrix} = \begin{bmatrix} I_n \\ X \end{bmatrix} F \qquad \Longleftrightarrow \qquad XBX + XA - DX - C = 0$$

- \bigcirc Easy to ensure Lagrangianity: $\mathcal U$ Lagrangian $\Leftrightarrow X$ Hermitian
- © Not all subspaces well represented: what about these?

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 \\ 1 & 1 + \varepsilon \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Orthogonal bases

Natural solution: orthogonal basis

$$\mathcal{U} = \mathsf{Im} \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix}$$

with orthogonal columns

- ③ All subspaces representable
- ☺ Very stable, no element growth
- © Computationally more expensive
- (c) Too many parameters: Lagrangianity $\Leftrightarrow Q_1^*Q_2 = Q_2^*Q_1$ Easily lost through numerical computation, difficult to enforce explicitly

Loss of Lagrangianity is a serious problem, e.g. in Laub Trick [Laub, '79]

Trying to save the Riccati approach

A "folklore result": in some cases useful to switch to $\begin{bmatrix} Y \\ I \end{bmatrix}$ (so $Y = X^{-1}$)

Dual ARE

 $XBX + XA - DX - C = 0 \implies B + AY - YD - YCY = 0$

But still both approaches can fail: e.g.,

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$ Neither $\begin{bmatrix} 1 \\ X \end{bmatrix}$ nor $\begin{bmatrix} Y \\ 1 \end{bmatrix}$ work Idea: The identity that we are looking for is already there, in rows 1 and 4!

Permuted graph bases

But permutations are not the right tool here: want to preserve Lagrangianity

The right thing: symplectic swap matrices

Symplectic row swap matrices: those that act (separately) as either

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 or $\mathcal{J}_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

on every pair of indices (i, n+i)

Examples:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \qquad I_{2n} = \begin{bmatrix} I_n & 0 \\ 0 & I_n \end{bmatrix} \qquad \mathcal{J}_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

- Can only swap row i with n + i
- There's 2ⁿ of them
- All preserve Lagrangianity, so $\Pi \begin{bmatrix} I \\ X \end{bmatrix}$ Lagrangian $\Leftrightarrow X$ Hermitian

F. Poloni (TU Berlin)

 2×2 case

$$U = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

If
$$\boxed{\frac{1}{2}}$$
 well-conditioned $\Rightarrow U \cdot \text{inv} \left(\boxed{\frac{1}{2}} \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ * & * \end{bmatrix}$
If $\boxed{\frac{3}{4}}$ well-conditioned $\Rightarrow U \cdot \text{inv} \left(\boxed{\frac{3}{4}} \right) = \begin{bmatrix} * & * \\ * & * \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

2×2 case

If
$$\boxed{1}{4}$$
 well-conditioned $\Rightarrow U \cdot \text{inv} \left(\boxed{1}{4} \right) = \begin{bmatrix} 1 & 0 \\ * & * \\ 0 & 1 \end{bmatrix} = \Pi \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ 0 & 1 \end{bmatrix}$
If $\boxed{3}{2}$ well-conditioned $\Rightarrow U \cdot \text{inv} \left(\boxed{3}{2} \right) = \begin{bmatrix} * & * \\ 0 & 1 \\ 1 & 0 \\ * & * \end{bmatrix} = \Pi \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ * & * \end{bmatrix}$
What if none of them works? E.g., $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$? Not Lagrangian!

How good are row swaps?

U = Im U has a permuted graph basis with a prescribed Π iff some subset of *n* rows of *U* is linearly independent

$$U = \Pi \begin{bmatrix} Y \\ Z \end{bmatrix} \sim \Pi \begin{bmatrix} I \\ ZY^{-1} \end{bmatrix} \stackrel{def}{=} \Pi \begin{bmatrix} I \\ X \end{bmatrix}$$

Theorem

For each Lagrangian \mathcal{U} there's a Π such that Y is invertible...

Follows easily from a result on symplectic matrices [Dopico, Johnson '06]

Theorem [Mehrmann, P., preprint]

 \ldots moreover, there's one with X entrywise small:

$$|(X)_{ij}| \leq egin{cases} 1 & ext{if } i=j \ \sqrt{2} & ext{otherwise} \end{cases}$$

Geometrical interpretation

In geometrical terms: the 2^n maps

$$f_{\Pi}: X$$
 Hermitian and bounded $\mapsto \operatorname{Im} \Pi \begin{bmatrix} I \\ X \end{bmatrix}$

are an atlas for the manifold of Lagrangian subspaces For each subspace, we can find \varPi giving "tame" structure-preserving basis

Image: ©Wikimedia

Unstructured case

Similar, unstructured version known for a generic subspace:

Theorem [Knuth, \approx '84??]

For every *n*-dimensional subspace $\mathcal{U} \subseteq \mathbb{C}^{n+m}$, there are a permutation matrix Π and an $X \in \mathbb{C}^{m \times n}$ with $|x_{i,j}| \leq 1$ for all i, j such that

$$\mathcal{U} = \operatorname{Im} \Pi \begin{bmatrix} I_n \\ X \end{bmatrix}$$

Connected to rank revealing QR: existing work by Knuth, C.-T. Pan, Gu–Eisenstat, Goreinov *et al*...

Key word: Plücker coordinates

Sketch of the proof

$$U = \Pi \begin{bmatrix} Y_{\Pi} \\ Z_{\Pi} \end{bmatrix} \sim \Pi \begin{bmatrix} I \\ Z_{\Pi} Y_{\Pi}^{-1} \end{bmatrix} \stackrel{\text{def}}{=} \Pi \begin{bmatrix} I \\ X_{\Pi} \end{bmatrix}$$

Different Π give different Y_{Π} ; take R so that $|\det Y_R|$ maximal

Cramer's rule on $X_R = Z_R Y_R^{-1}$ gives

$$|x_{ii}| = \left|\frac{\det Y_Q}{\det Y_R}\right| \le 1$$

Can only swap *i* with $n + i \Rightarrow$ this works only for diagonal elements x_{ii} But similarly

$$\left| \det \begin{bmatrix} x_{i,i} & x_{i,j} \\ \overline{x_{i,j}} & x_{j,j} \end{bmatrix} \right| = \left| \frac{\det Y_Q}{\det Y_R} \right| \le 1 \quad \Rightarrow \quad |x_{i,j}| \le \sqrt{2}$$

Computing a good \varPi

The proof can be turned into a "greedy" algorithm: given U s.t. Im U = U,

- 2 compute basis $\Pi \begin{bmatrix} I \\ X \end{bmatrix}$
- 3 if $|x_{i,i}| > 1$, update Π with a row swap to enlarge det Y_{Π} , goto 2
- if $|x_{i,j}| > \sqrt{2}$, two row swaps, goto 2
 - Best to work with thresholds $S > 1, T > \sqrt{2}$
 - Ends with a matrix X with $|(X)_{ij}| \leq \begin{cases} S & \text{if } i = j \\ T & \text{otherwise} \end{cases}$
 - Every update of X is essentially a rank-1 update, $O(n^2)$
 - Can be made very robust

Similar (less robust) algorithm for the unstructured case: [Goreinov et al., '08]

Applications?

Applications

Several different problems can be "reshaped" in order to use this theorem

Maslow's law

"If all you have is a hammer, everything looks like a nail"

Applications

Several different problems can be "reshaped" in order to use this theorem

Maslow's law

"If all you have is a hammer, everything looks like a nail"

Eigenvalues and right invariant subspaces of a pencil: well defined up to

 $sE - A \sim s(ME) - MA$ "right-handed equivalence"

Or: they depend on the subspace Im $\begin{bmatrix} E^*\\A^* \end{bmatrix}$, not on the matrix $\begin{bmatrix} E^*\\A^* \end{bmatrix}$ Results

Structured pencils

Symplectic pencils $E \mathcal{J}_{2n} E^* = A \mathcal{J}_{2n} A^* \qquad \Longleftrightarrow \qquad \begin{bmatrix} E & A \end{bmatrix} \begin{bmatrix} \mathcal{J}_{2n} & 0 \\ 0 & -\mathcal{J}_{2n} \end{bmatrix} \begin{bmatrix} E^* \\ A^* \end{bmatrix} = 0$ Hamiltonian pencils $E \mathcal{J}_{2n} A^* = -A \mathcal{J}_{2n} E^* \qquad \Longleftrightarrow \qquad \begin{bmatrix} E & A \end{bmatrix} \begin{bmatrix} 0 & \mathcal{J}_{2n} \\ \mathcal{J}_{2n} & 0 \end{bmatrix} \begin{bmatrix} E^* \\ A^* \end{bmatrix} = 0$

By exchanging blocks, we can transform the two matrices in red into \mathcal{J}_{4n} Up to some reordering, Im $\begin{bmatrix} E^*\\A^* \end{bmatrix}$ is Lagrangian!

Our theory can be used to give tame, structure-preserving representations. . .

Bounded representations of symplectic pencils

Theorem

Every symplectic pencil is (right-handed-)equivalent to one in the form

$$s \begin{bmatrix} I_n & X_{21} \\ 0 & X_{22} \end{bmatrix} \boldsymbol{\Pi}_1 - \begin{bmatrix} X_{11} & 0 \\ X_{21} & I_n \end{bmatrix} \boldsymbol{\Pi}_2$$

with Π_i symplectic swap matrices, $X = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$ bounded Hermitian

(Without the parts in red, well known)

Bounded representations of Hamiltonian pencils

Theorem

Every Hamiltonian pencil is (right-handed-)equivalent to one in the form

$$s\begin{bmatrix} E_1 & E_2\end{bmatrix} - \begin{bmatrix} A_1 & A_2\end{bmatrix}$$

with

$$\begin{bmatrix} E_1 & A_2 \end{bmatrix} = \begin{bmatrix} I & X_{11} \\ 0 & X_{21} \end{bmatrix} \mathbf{II}_1, \qquad \begin{bmatrix} -A_1 & E_2 \end{bmatrix} = \begin{bmatrix} X_{12} & 0 \\ X_{22} & I \end{bmatrix} \mathbf{II}_2,$$

and $X = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$ bounded Hermitian

Idea: start from sI - H, you can swap vectors between the "outer" blocks and between the "inner" ones

Deflating R in general-form control problems

In control problems, originally an "extended" $(2n + m) \times (2n + m)$ pencil Need deflation to get a Hamiltonian matrix/pencil

$$s\begin{bmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & A & B \\ A^* & Q & S \\ B^* & S^* & R \end{bmatrix} \implies s\begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} \mathcal{H} & 0 \\ * & * & I \end{bmatrix}$$

When *R* ill-conditioned or singular, trouble Solution: allow identities to move!

$$s\begin{bmatrix} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & A & B \\ A^* & Q & S \\ B^* & S^* & R \end{bmatrix} \implies s\begin{bmatrix} \mathcal{H}_1 & 0 \\ 0 \\ * & * & 0 \end{bmatrix} - \begin{bmatrix} \mathcal{H}_2 & 0 \\ 0 \\ * & * & I \end{bmatrix}$$

 $s\mathcal{H}_1 - \mathcal{H}_2$ Hamiltonian pencil (bounded as in the theorem)

Doubling algorithms – I

Doubling algorithms compute invariant subspaces of Hamiltonian / symplectic pencils

Key operation

Given
$$A - sE$$
, find full-rank $\begin{bmatrix} C & S \end{bmatrix}$ such that $\begin{bmatrix} C & S \end{bmatrix} \begin{vmatrix} A \\ E \end{vmatrix} = 0$

Two main strategies:

- QR-factorize $\begin{bmatrix} A \\ E \end{bmatrix}$ and construct C, S from Q
- permute and invert a block to reduce to $\begin{bmatrix} A \\ E \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix}$; then use

$$\begin{bmatrix} -X & I \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = 0$$

Doubling algorithms – II

- QR-factorize [^A_E]: inverse-free matrix sign/disc method [Benner, '96] , [Benner, Byers '06] , [Bai et al., '97]
- enforce identity: structure-preserving doubling algorithm (SDA) [Anderson, '78], [Chu et al., '04]

	QR-based	SDA
$O(n^3)$?	Yes	Yes
Structure-preserving?	No way!	Yes
Stable?	Yes	No way

This looks familiar... again, it's hammer time!

An attempt at a new doubling algorithm

${\sf Doubling} + {\sf permuted \ graph \ bases}$

• Compute bounded permuted graph basis $\begin{bmatrix} E \\ A \end{bmatrix} = \widetilde{\Pi} \mid \stackrel{I}{\widetilde{X}} \mid$

- $[c s] = [-\widetilde{x}_I] \widetilde{\Pi}^{-1}$
- Use C, S to perform a doubling step
- Compute bounded permuted graph basis of $\begin{bmatrix} E^* \\ A^* \end{bmatrix} = \Pi \begin{bmatrix} I \\ X \end{bmatrix}$

O Repeat until convergence

An attempt at a new doubling algorithm

Doubling + permuted graph bases

- Compute bounded permuted graph basis $\begin{bmatrix} E \\ A \end{bmatrix} = \widetilde{\Pi} \begin{vmatrix} I \\ \widetilde{X} \end{vmatrix}$
- $[c s] = [-\tilde{x} I] \tilde{\Pi}^{-1} (unstructured version)$
- Use C, S to perform a doubling step
- **③** Compute bounded permuted graph basis of $\begin{bmatrix} E^* \\ A^* \end{bmatrix} = \Pi \begin{bmatrix} I \\ X \end{bmatrix}$
- Enforce Lagrangianity: $X \leftarrow \frac{1}{2}(X + X^*)$
- Repeat until convergence

Still not 100% satisfactory: $\begin{bmatrix} E \\ A \end{bmatrix}$ is not Lagrangian: switch to unstructured arithmetic and then project back

Looking for a compact version of 1–4 using only Hermitian arithmetic Possible in the known special cases (SDA, Cyclic Reduction)

But still, great numerical results...

Figure: Relative subspace residual for the 33 CAREX problems in [Chu et al., '07]

Figure: Lagrangianity residual for the 33 CAREX problems in [Chu et al., '07]

Now, stability analysis...

Stability results

- $\kappa(\Pi \begin{bmatrix} I \\ X \end{bmatrix}) \leq Cn$, with $\kappa(Z) = \sigma_{\max}(Z) / \sigma_{\min}(Z)$
- Given an initial basis U, can construct $\prod \begin{bmatrix} I \\ ZY^{-1} \end{bmatrix}$ with $\kappa(Y) \leq Cn\kappa(U)$

Unfortunately, textbook backward stability analysis not well suited to doubling (or, more generally, matrix squaring):

Note: 0 not a critical eigenvalue here

How good is this in theory?

	QR-based	SDA	Permuted SDA
<i>O</i> (<i>n</i> ³)?	Yes	Yes	
Structure-preserving?	No way!	Yes	
Stable?	Yes	No way!	

How good is this in theory?

	QR-based	SDA	Permuted SDA
$O(n^3)?$	Yes	Yes	Kind of
Structure-preserving?	No way!	Yes	Kind of
Stable?	Yes	No way!	Kind of

- O(n³): Need to bound total number of row swaps
 Well-studied in the unstructured case
 In practice 2n row swaps (overall) suffice on all experiments
- Structure-preserving: Would like "fully Hermitian" update formula We haven't nailed it down yet...
- Stable: can mimic [Bai et al., '97], but large worst-case constants

Turning those "kind of" into yes looks possible for the first time

Conclusions

- Doubling now competitive with state-of-the-art algorithms for dense control problems (Matlab code soon to be released — contact me for info)
- Recipe to add stability to existing structure-preserving algorithms

Other possible "nail" applications:

- Large scale Riccati and ADI:
 X (approx) low rank ⇒ many determinants (approx) 0
- \mathcal{H}_{∞} control: Riccati with unbounded solutions show up
- "Butterfly" SR/SZ algorithms
- Are you working with symplectic matrices? Maybe your problem looks like a nail, too

Conclusions

- Doubling now competitive with state-of-the-art algorithms for dense control p (Matlab)
- Recipe t Thanks for your attention! Questions?

Other possibl

- Large sc
 - X (approx) low rank \Rightarrow many determinants (approx) 0
- $\bullet~\mathcal{H}_\infty$ control: Riccati with unbounded solutions show up
- "Butterfly" SR/SZ algorithms
- Are you working with symplectic matrices? Maybe your problem looks like a nail, too

hms

How does it compare to [Mehrmann, Schröder, Watkins '09] ?

	QR-based	SDA	Perm-SDA	MehSW
<i>O</i> (<i>n</i> ³)?	Yes	Yes	Kind of	Yes
Structure-preserving?	No way!	Yes	Kind of	Yes?*
Stable?	Yes	No way!	Kind of	Yes?*
BLAS3/Parallel/ Communication optimal?	Yes	Yes	Kind of	No way!

- *MehSW (essentially: block Schur + Laub trick on every block) uses orthogonal bases and can have the same problems as Laub trick
- Schur-type algorithms not suited for large communication optimal linear algebra for instance, [Demmel et al., '06] use doubling instead of QR for eigenvalues

Figure: Unstructured pencil backward error for the problems in [Chu et al., '07]

F. Poloni (TU Berlin)

32 / 29