Splittings of (block) Hessenberg M-matrices

Luca Gemignani, <u>Federico Poloni</u> Department of Computer Science, University of Pisa

ALAMA/2GGALN Conference Alcalá de Henares, June 20202022

F. Poloni (U Pisa)

Hessenberg splittings

ALAMA/2GG 2022 1 / 14

M-Matrix splittings

Let A be an M-matrix: for simplicity in this talk A = I - P, with $P \ge 0$ and $\rho(P) < 1$.

A regular splitting is a decomposition $P = P_1 + P_2$, with $P_1, P_2 \ge 0$.

Classical topic associated to iterative methods for linear systems Ax = b:

$$Ax = b \implies (I - P_1)x = P_2x + b \implies (I - P_1)x_{k+1} = P_2x_k + b.$$

Equivalently: Richardson iteration preconditioned with $I - P_1$:

$$x_{k+1} = x_k + (I - P_1)^{-1}(b - Ax_k).$$

$$\begin{array}{ll} P_1 = {\rm diag}(P) & {\rm Jacobi} \\ P_1 = {\rm tril}(P) & {\rm Gauss-Seidel} \\ P_1 = {\rm triu}(P) & {\rm anti-Gauss-Seidel} \end{array}$$

Other splittings

Other splittings are useful, especially if they are permuted triangular \rightarrow systems $(I - P_1)x_{k+1} = \dots$ can be solved by substitution.

One can compute first all even-numbered entries of x_{k+1} in parallel, then all odd-numbered ones.

This makes sense in a parallel setting, especially blockwise (* = blocks).

Comparison theorems

The asymptotic convergence speed of the iterative method $(I - P_1)x_{k+1} = P_2x_k + b$ is given by the spectral radius $\rho((I - P_1)^{-1}P_2) =: sr(P_1)$, natural comparison measure.

Various classical results exist.

Theorem [Varga '61, Woźnicki '01] Given two splittings P_1, P_2 and \hat{P}_1, \hat{P}_2 , • $\hat{P}_1 \ge P_1 \implies \operatorname{sr}(\hat{P}_1) \le \operatorname{sr}(P_1)$ • $A^{-1}\hat{P}_2A^{-1} \le A^{-1}P_2A^{-1} \implies \operatorname{sr}(\hat{P}_1) \le \operatorname{sr}(P_1)$ • $\hat{P}_2A^{-1} \le (A^{-1}P_2)^T \implies \operatorname{sr}(\hat{P}_1) \le \operatorname{sr}(P_1)$

Idea: The larger P_1 is, the closer $I - P_1$ is to $A = I - P_1 - P_2 \rightarrow$ more effective preconditioner.

Comparing splittings

These theorems allow one to compare effectiveness.

Example (Stein–Rosenberg theorem) diag(P) \leq tril(P) \implies sr(Gauss–Seidel) \leq sr(Jacobi)

Many splittings cannot be compared:

Example

No inequalities hold in general between triu(P) and tril(P) \implies Gauss–Seidel and anti-Gauss–Seidel are incomparable.

Comparing the incomparable

Our main result looks like it should be in a 1980s book (but we looked around and didn't find it).

```
Theorem [Gemignani, P. '21]
```

For a lower Hessenberg M-matrix,

```
sr(anti-Gauss-Seidel) \le sr(staircase) \le sr(Gauss-Seidel).
```

More generally, anti-Gauss–Seidel beats any splitting with a permuted triangular $P_1 = \Pi \prod \Pi^*$.

Analogous results hold for upper Hessenberg matrices (replacing GS with AGS), and blockwise.

A counterintuitive result

Black + red is a better preconditioner than black + blue. Even with fewer and possibly smaller entries, e.g., in

$$A = \begin{bmatrix} 1 & -\varepsilon & 0 \\ -100 & 1 & -\varepsilon \\ -100 & -100 & 1 \end{bmatrix}.$$

Why does this case matter?

Several queuing theory problems result in block Hessenberg matrices: Markov chains with skip-free 'levels', e.g., number of customers in a queue.

Typically the blocks themselves are sparse, making them prime candidates for iterative methods. [Latouche–Ramaswami book '99; Dudin, Dudin et al. '20]; also [Meini '97, Bini–Latouche–Meini book '05] for the infinite-dimensional case.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix}P_{11} & P_{12}\\ 0 & P_{22}\end{bmatrix}, \begin{bmatrix}0 & 0\\ P_{21} & 0\end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix}P_{11} & 0\\ P_{21} & P_{22}\end{bmatrix}, \begin{bmatrix}0 & P_{12}\\ 0 & 0\end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix}P_{11} & P_{12}\\ 0 & P_{22}\end{bmatrix}, \begin{bmatrix}0 & 0\\ P_{21} & 0\end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix}P_{11} & 0\\ P_{21} & P_{22}\end{bmatrix}, \begin{bmatrix}0 & P_{12}\\ 0 & 0\end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix}\right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix}\right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

The swap lemma

$$\operatorname{sr}\left(\begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ P_{21} & 0 \end{bmatrix} \right) = \operatorname{sr}\left(\begin{bmatrix} P_{11} & 0 \\ P_{21} & P_{22} \end{bmatrix}, \begin{bmatrix} 0 & P_{12} \\ 0 & 0 \end{bmatrix} \right)$$

Proof: same characteristic polynomial $det((I - P_1)x - P_2)$.

A combinatorial proof

Sketch of a combinatorial proof that $sr(AGS) \leq sr(GS)$:

- Consider P as the adjacency matrix of a directed weighted graph. The splitting P = P₁ + P₂ partitions edges into E = E₁ ⊔ E₂.
- Main idea: if the adjacency matrix of a graph is lower Hessenberg, red edges (from *i* to *j* < *i*) appear in a walk at least as often as blue ones, since we can only decrease by one at a time: *i* → *i* − 1 → *i* − 2 →

A combinatorial proof – cont.

- Matrix multiplication \leftrightarrow counting walks: P_1P_2 counts walks with one step in E_1 and then one in E_2 .
- $R = (I P_1)^{-1}P_2 = (I + P_1 + P_1^2 + ...)P_2$ counts walks with an arbitrary number of E_1 -steps and end with an E_2 -step.
- In GS, R^k counts walks with k red edges; in AGS, it counts walks with k blue edges.
- This argument gives an inequality $R_{AGS}^k \lesssim R_{GS}^k$.

Experiments

Iteration radii for 50 random 5 × 5 lower Hessenberg M-matrices, sorted by decreasing value of $\rho(GS)$.

F. Poloni (U Pisa)

Hessenberg splittings

Experiments

Iteration radii with over-relaxation, matrix Q from [Dudin, Dudin et al '20] (upper block Hessenberg with 20 blocks of size 48 each).

Conclusions

- Little counterintuitive result that somehow eluded the 1980s.
- Potential for queuing theory applications.
- Some insight to drive preconditioner/splitting choices.

Thanks for your attention!

Gemignani, P. Comparison theorems for splittings of M-matrices in (block) Hessenberg form. BIT 2021.