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M-Matrix splittings
Let A be an M-matrix: for simplicity in this talk A = I − P, with P ≥ 0
and ρ(P) < 1.

A regular splitting is a decomposition P = P1 + P2, with P1, P2 ≥ 0.

Classical topic associated to iterative methods for linear systems Ax = b:

Ax = b =⇒ (I − P1)x = P2x + b =⇒ (I − P1)xk+1 = P2xk + b.

Equivalently: Richardson iteration preconditioned with I − P1:

xk+1 = xk + (I − P1)−1(b − Axk).

P1 = diag(P) Jacobi
P1 = tril(P) Gauss-Seidel
P1 = triu(P) anti-Gauss-Seidel
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Other splittings
Other splittings are useful, especially if they are permuted triangular →
systems (I − P1)xk+1 = . . . can be solved by substitution.

Staircase splitting

P1 =



∗ ∗
∗
∗ ∗ ∗

∗
∗ ∗ ∗

∗


, P2 =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


.

One can compute first all even-numbered entries of xk+1 in parallel, then
all odd-numbered ones.

This makes sense in a parallel setting, especially blockwise (∗ = blocks).
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Comparison theorems
The asymptotic convergence speed of the iterative method
(I − P1)xk+1 = P2xk + b is given by the spectral radius
ρ((I − P1)−1P2) =: sr(P1), natural comparison measure.

Various classical results exist.

Theorem [Varga ’61, Woźnicki ’01]

Given two splittings P1, P2 and P̂1, P̂2,
P̂1 ≥ P1 =⇒ sr(P̂1) ≤ sr(P1)
A−1P̂2A−1 ≤ A−1P2A−1 =⇒ sr(P̂1) ≤ sr(P1)
P̂2A−1 ≤ (A−1P2)T =⇒ sr(P̂1) ≤ sr(P1)

Idea: The larger P1 is, the closer I − P1 is to A = I − P1 − P2 → more
effective preconditioner.
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Comparing splittings
These theorems allow one to compare effectiveness.

Example (Stein–Rosenberg theorem)
diag(P) ≤ tril(P) =⇒ sr(Gauss–Seidel) ≤ sr(Jacobi)

Many splittings cannot be compared:

Example
No inequalities hold in general between triu(P) and tril(P) =⇒
Gauss–Seidel and anti-Gauss–Seidel are incomparable.

F. Poloni (U Pisa) Hessenberg splittings ALAMA/2GG 2022 5 / 14



Comparing the incomparable
Our main result looks like it should be in a 1980s book (but we looked
around and didn’t find it).

Theorem [Gemignani, P. ’21]

For a lower Hessenberg M-matrix,

sr(anti-Gauss–Seidel) ≤ sr(staircase) ≤ sr(Gauss–Seidel).

More generally, anti-Gauss–Seidel beats any splitting with a permuted
triangular P1 = Π Π∗.

Analogous results hold for upper Hessenberg matrices (replacing GS with
AGS), and blockwise.
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A counterintuitive result

A =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


Black + red is a better preconditioner than black + blue.

Even with fewer and possibly smaller entries, e.g., in

A =

 1 −ε 0
−100 1 −ε
−100 −100 1

 .
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Why does this case matter?

A =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


Several queuing theory problems result in block Hessenberg matrices:
Markov chains with skip-free ‘levels’, e.g., number of customers in a queue.

Typically the blocks themselves are sparse, making them prime candidates
for iterative methods. [Latouche–Ramaswami book ’99; Dudin, Dudin et al. ’20];
also [Meini ’97, Bini–Latouche–Meini book ’05] for the infinite-dimensional case.
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Proof

The swap lemma

sr
([

P11 P12
0 P22

]
,

[
0 0

P21 0

])
= sr

([
P11 0
P21 P22

]
,

[
0 P12
0 0

])

Proof: same characteristic polynomial det((I − P1)x − P2).

We get from GS (or other splittings) to AGS with a sequence of moves
that are either (1) swap lemma applications or (2) increasing entries of P1.

P1 =



∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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A combinatorial proof
Sketch of a combinatorial proof that sr(AGS) ≤ sr(GS):

Consider P as the adjacency matrix of a directed weighted graph.
The splitting P = P1 + P2 partitions edges into E = E1 ⊔ E2.
Main idea: if the adjacency matrix of a graph is lower Hessenberg, red
edges (from i to j < i) appear in a walk at least as often as blue ones,
since we can only decrease by one at a time: i → i − 1 → i − 2 → . . . .

1 2 3 4 5


∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



F. Poloni (U Pisa) Hessenberg splittings ALAMA/2GG 2022 10 / 14



A combinatorial proof – cont.
Matrix multiplication ↔ counting walks: P1P2 counts walks with one
step in E1 and then one in E2.
R = (I − P1)−1P2 = (I + P1 + P2

1 + . . . )P2 counts walks with an
arbitrary number of E1-steps and end with an E2-step.
In GS, Rk counts walks with k red edges; in AGS, it counts walks
with k blue edges.
This argument gives an inequality Rk

AGS ≲ Rk
GS .

1 2 3 4 5


∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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Experiments
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Iteration radii for 50 random 5 × 5 lower Hessenberg M-matrices, sorted by
decreasing value of ρ(GS).
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Experiments
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Iteration radii with over-relaxation, matrix Q from [Dudin, Dudin et al ’20]
(upper block Hessenberg with 20 blocks of size 48 each).
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Conclusions
Little counterintuitive result that somehow eluded the 1980s.
Potential for queuing theory applications.
Some insight to drive preconditioner/splitting choices.

Thanks for your attention!

Gemignani, P. Comparison theorems for splittings of M-matrices in (block)
Hessenberg form. BIT 2021.
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