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M-Matrix splittings

Let A be an M-matrix: for simplicity in this talk A=/— P, with P >0
and p(P) < 1.

A regular splitting is a decomposition P = Py + P, with P, P, > 0.

Classical topic associated to iterative methods for linear systems Ax = b:

Ax=b — (I—Pl)X:P2X+b — (/—Pl)Xk+1:P2Xk—|—b. J

Equivalently: Richardson iteration preconditioned with /| — P;:

Xk+1 = Xk + (/ — Pl)fl(b - AXk).

P; = diag(P) Jacobi
P =tril(P)  Gauss-Seidel
P1 = triu(P)  anti-Gauss-Seidel
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Other splittings

Other splittings are useful, especially if they are permuted triangular —

systems (/ — P1)xxk+1 = ... can be solved by substitution.

Staircase splitting

*

* Kk X X

* Kk X X X
*

k%

One can compute first all even-numbered entries of xx11 in parallel, then

all odd-numbered ones.

This makes sense in a parallel setting, especially blockwise (x = blocks).

* X ¥ X
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Comparison theorems

The asymptotic convergence speed of the iterative method
(I — P1)xk+1 = Paxx + b is given by the spectral radius
p((I — P1)™1P,) =: sr(Py), natural comparison measure.

Various classical results exist.

Theorem [Varga '61, Woznicki '01]

Given two splittings P1, P> and Py, P,
o P> P, = st(P1) <sr(Py)
o ATIPATT < AP AL — sr(Py) < st(Py)
o RATL<(AIP)T = sr(Py) < sr(P1)

Idea: The larger P; is, the closer [ — Py isto A=1— P; — P, — more
effective preconditioner.
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Comparing splittings
These theorems allow one to compare effectiveness.

Example (Stein—Rosenberg theorem)
diag(P) < tril(P) = sr(Gauss—Seidel) < sr(Jacobi)

Many splittings cannot be compared:

Example

No inequalities hold in general between triu(P) and tril(P) =
Gauss—Seidel and anti-Gauss—Seidel are incomparable.
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Comparing the incomparable

Our main result looks like it should be in a 1980s book (but we looked
around and didn't find it).

Theorem [Gemignani, P. '21]

For a lower Hessenberg M-matrix,
sr(anti-Gauss—Seidel) < sr(staircase) < sr(Gauss—Seidel).

More generally, anti-Gauss—Seidel beats any splitting with a permuted
triangular P; = hid gl

Analogous results hold for upper Hessenberg matrices (replacing GS with
AGS), and blockwise.
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A counterintuitive result

* K X K K ¥
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* X X X K
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*

Black + red is a better preconditioner than black + blue.

Even with fewer and possibly smaller entries, e.g., in

A=
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Why does this case matter?

L S SR I
L S SR SR S
* X X X K
R R

Several queuing theory problems result in block Hessenberg matrices:
Markov chains with skip-free ‘levels’, e.g., number of customers in a queue.

Typically the blocks themselves are sparse, making them prime candidates
for iterative methods. [Latouche-Ramaswami book '99; Dudin, Dudin et al. '20];
also [Meini '97, Bini-Latouche—Meini book '05] for the infinite-dimensional case.
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Proof

The swap lemma

o P11 P12 0 O . Pi1 O 0 P2
0 Py|’'|Pn 0) Py1 Pxn|’|0 0

Proof: same characteristic polynomial det((/ — P1)x — P»).

We get from GS (or other splittings) to AGS with a sequence of moves
that are either (1) swap lemma applications or (2) increasing entries of P;.

P =

EE I S S

* X X X %
* X X X
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A combinatorial proof

Sketch of a combinatorial proof that sr(AGS) < sr(GS):
@ Consider P as the adjacency matrix of a directed weighted graph.
The splitting P = Py + P, partitions edges into £ = E; LI E.

@ Main idea: if the adjacency matrix of a graph is lower Hessenberg, red
edges (from j to j < i) appear in a walk at least as often as blue ones,
since we can only decrease by one at atime: i - i—1—i—2—....

k* ok

* ok X

k% ok ok
k% ok ok ok
k% ko kX
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A combinatorial proof — cont.

@ Matrix multiplication <+ counting walks: P; P> counts walks with one
step in E1 and then one in E;.

@ R=(I—Py)" 1Py = (I+ Py + P? +...)P, counts walks with an
arbitrary number of E;-steps and end with an Ep-step.

@ In GS, R* counts walks with k red edges; in AGS, it counts walks
with k blue edges.

@ This argument gives an inequality RA‘GS < Rés.

588

ESE S
ESE S S
EE N
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Experiments

m = sr(GS)
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Experiment number

Iteration radii for 50 random 5 x 5 lower Hessenberg M-matrices, sorted by
decreasing value of p(GS).
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Experiments
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Iteration radii with over-relaxation, matrix @ from [Dudin, Dudin et al '20]
(upper block Hessenberg with 20 blocks of size 48 each).
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Conclusions

o Little counterintuitive result that somehow eluded the 1980s.
@ Potential for queuing theory applications.
@ Some insight to drive preconditioner/splitting choices.

Thanks for your attention! J

Gemignani, P. Comparison theorems for splittings of M-matrices in (block)
Hessenberg form. BIT 2021.
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