
Algorithms for quadratic matrix equations in probability
With an eye to similarities with Control Theory

Federico Poloni

Scuola Normale Superiore, Pisa — Now @TU Berlin

TU Berlin, 29 April 2010

F. Poloni (SNS) Matrix equations TU Berlin 1 / 24



Everyone has problems

I will be at TU till June, 4

Looking forward to working & discussing research problems (either yours
or mine) close to my research area while I’m here

My problems

1 Matrix equations in probability

2 Matrix geometric means

This talk will be about #1

. . . but first a very short mention to #2
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What I won’t talk about

Problem A proper generalization of the geometric mean k
√

a1a2 . . . ak

to positive definite (PD) matrices

Applications Averaging the results of physical experiments which return
PD (or maybe even Hamiltonian, symplectic) matrices

Connections to the Riemannian geometry of PD matrices

It is tricky how to define properly a geometric mean of n ≥ 3 matrices
satisfying some intuitive properties (permutation invariance, monotonicity)

Problems

No unique solution: which one is to prefer?

How to compute them efficiently?

Find new easier-to-compute means

[Ando, Li, Mathias 2004] [Moakher 2005] [Bini, Meini, P. 2010] + others
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What I’ll talk about

In applied probability, several analogous to the matrix equations you are
studying at TU:

Examples

Nonsymmetric algebraic Riccati equation

XCX − AX − XD + B = 0 (NARE)

Unilateral quadratic equation

PX 2 + QX + R = 0 (UQME)

(⇔ quadratic eigenvalue problems)

Solutions ⇔ invariant subspaces of suitable structured matrices/pencils.
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What changes — eigenvalues

No symmetry/structure ⇒ no eigenvalue symmetry, instead:

Eigenvalue splitting

NARE: Hamiltonian splitting
n eigval’s in the right half-plane, n in the left
UQME: symplectic splitting
n eigval’s inside the unit circle, n outside

Looking for the solution corresponding to the eigval’s in the right
half-plane/inside the circle

convergence depends on the gap between the closest pair of eigval’s
in opposite regions

These eigval’s are usually real (Perron-Frobenius theory)

Eigval’s on the border, but only in selected locations: 0, 1, roots of 1
Often we can remove them (we’ll see later)

Troubles: eigenvalues very close to the border (critical cases)
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What changes — positivity

New structure to preserve: positivity (entry-wise)

Because of this, iterative methods are usually preferred to Schur
form-based ones

Schur-based exist, e.g. [Guo 2006], but more troubles with
ill-conditioned cases

Probabilists like algorithms with probabilistic interpretations

They work with moderate sizes (for now), so we may use dense linear
algebra – O(n3)

Younger field, less understood than control theory

We could borrow some of your theory/tools
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Nonsymmetric ARE

Nonsymmetric algebraic Riccati equation

XCX − AX − XD + B = 0 (NARE)

with Hamiltonian splitting
Possible algorithms:

Fixed-point iterations — slow convergence

Newton’s method — expensive: requires solving a “nonsymmetric
Lyapunov” at each step

Structured Doubling Algorithm (SDA) — much better

SDA was born for control theory (DARE/CARE) [Anderson ’78] [Chu,
Fan, Lin 2005] but gained more success here
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Outline of SDA

1 Construct H =

[
D −C
B −A

]
(eigval’s have Hamiltonian splitting)

2 Cayley transform S = H−γI
H+γI (symplectic splitting)

3 Factor S =

[
I −G0

0 F0

]−1 [
E0 0
−H0 I

]
4 Find E1, F1, G1, H1 of an analogous factorization of S2

5 Repeat: S2k
=

[
I −Gk

0 Fk

]−1 [
Ek 0
−Hk I

]

You can also think in terms of pencils: λ

[
I −Gk

0 Fk

]
−

[
Ek 0
−Hk I

]
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SDA – formulas and convergence

SDA

S2k
=

[
I −Gk

0 Fk

]−1 [
Ek 0
−Hk I

]
or λ

[
I −Gk

0 Fk

]
−

[
Ek 0
−Hk I

]
Ek+1 = Ek(I − GkHk)−1Ek

Fk+1 = Fk(I − HkGk)−1Fk

Gk+1 = Gk + Ek(I − GkHk)−1HkEk

Hk+1 = Hk + Fk(I − HkGk)−1HkEk

Ek → 0 ∼ eigval’s in the unit circle converge to zero
Fk → 0 ∼ eigval’s outside the circle converge to eigval’s at infinity
Gk → X+, Hk → X− solutions associated with stable/unstable subspaces

we only invert the “tame” matrices I − GkHk , I − HkGk
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SDA vs. matrix sign iteration

Why is squaring the “right thing”?

H 1
2

(
H + H−1

)

S S2

Sign iter

Cayley Cayley

Squaring

SDA ⇔ matrix sign iteration — more robust implementation

Converges even with (multiple) eig’vals on the border (linear instead of
quadratic convergence) [Guo, Lin + 4 others, 2009]

Good accuracy even in critical cases, when (I − GkHk) → singular. Why?

Also works when X is not square (n eigval’s left, m right)

F. Poloni (SNS) Matrix equations TU Berlin 10 / 24



Questions

Questions

Scaling the matrix sign iteration inside SDA

SDA for Lur’e equations? Work in progress with Timo. . .

Weaker applicability conditions

Other choices of the factorization/pencil

Satisfying error theory

Are SDA and Newton’s method related?
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Unilateral quadratic equations

Unilateral quadratic equation

PX 2 + QX + R = 0 (UQME)

P and R might be (highly) singular

with symplectic splitting
Algorithms:

No one attempted direct methods (linearization + Schur) as far as I
know

Fixed-point iterations — slow convergence

Newton’s method — expensive

Cyclic Reduction (CR) — much better

CR was born for PDE [Golub, 70], rediscovered for these equations
[Latouche, Ramaswami ’93] [Bini, Meini ’96]
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Outline of CR

1 Construct an equation for X 2:

0 = (PX 2 + QX + R)Q−1(PX 2 − QX + R) = P1(X
2)2 + Q1X

2 + R1

2 Repeat

The pencil λ2P1 + λQ1 + R1 has the same eigvec’s as λ2P + λQ + R, but
squared eigenvalues
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CR – formulas and convergence

CR

Pkλ2 + Qkλ + Rk

Pk+1 = PkQ−1
k Rk

Qk+1 = Qk − PkQ−1
k Rk − RkQ−1

k Pk

Rk+1 = RkQ−1
k Rk

Rk → 0 ∼ eigval’s in the unit circle converge to zero
Pk → 0 ∼ eigval’s outside the circle converge to eigval’s at infinity
(some expressions) → X±, solutions associated with stable/unstable
subspaces can be recovered

Converges even with (multiple) eig’vals on the border (linear instead of
quadratic)

Good accuracy even in critical cases, when Qk → singular
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What’s going on: SDA, CR and linearizations

Connections between them:

Linearization

λ2P + λQ + R 7→ λ

[
0 I
R 0

]
+

[
P 0
Q −I

]
followed by (a variant of) SDA yields CR [Guo, Lin + others 2009]

Quadraticization[
I −G0

0 F0

]
λ−

[
E0 0
−H0 I

]
7→ λ2

[
0 0
0 F

]
− λ

[
I −G
−H I

]
+

[
E 0
0 0

]
(adds n eigval’s at 0, n at infinity) followed by CR yields SDA [Bini,
Meini, P. 2008]
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Questions

The same as SDA!

Questions

Scaling the matrix sign iteration inside CR

Weaker applicability conditions

Other choices of the linearization

Satisfying error theory

Are CR and Newton’s method related?
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The shift technique

How to deal with eigval’s on the border?

Theorem

Let (λ, v) be an eigenpair of H; for each µ, u

H̃ = H + µvuT

has the same eigval’s of H, except λ becomes λ + µ

Solutions to the matrix eqns change in predictable ways
(or in some cases do not change at all)

Eigvec’s associated with 0 (or 1) are known or simple to compute —
shifting of 0 (1) eigval’s is customary [He, Meini, Rhee 2001]
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Shift for critical cases

Recently we tried to compute directly critical eigenspaces even for eigval’s
close to the border and shift them away [Iannazzo, P. submitted]

You can do most of the job working with well-conditioned eigenspaces
instead of ill-conditioned eigenpairs

Mixed method: partly direct eig computation, partly iteration

Questions

Better ways to compute the critical eigenspaces (Arnoldi variants?)

Detailed error analysis – some parts are O(
√

ε), some are O(ε)
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Lu’s “simple equation”

A vector equation arising from a rank-structured NARE

Lu’s equation

x = (Py) .* x + ones(n, 1)

y = (Qx) .* y + ones(n, 1)
x , y ∈ Rn

+ unknowns (SE)

You can use displacement rank-structured linear algebra and perform
iterative algorithms (SDA, Newton) in O(n2) ops/step [Bini, Iannazzo, P.
2008]

. . . or you can recover the solution explicitly after computing the
eigenvalues [Mehrmann, Xu 2008]

But how do they compute the eigenvalues? Through a quadratically
convergent O(n2) ops/step iteration

Question

Are these iterative and “direct” methods related?
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Markovian binary trees

MBT equation

x = a + b(x , x)

a, x ∈ Rn
+ and b : Rn

+ × Rn
+ → Rn

+ vector-valued bilinear map

e := ones(n, 1) always a solution, but we want the minimal nonnegative

Algorithms:

Fixed-point iterations — always slow

Newton’s method — slow convergence when xmin ≈ e

New algorithm: Perron vector-based iterations [Bini, Meini, P. submitted]
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Outline of PV-based

1 Change of vars y := e − x yields

y = (Hy )y , Hy ∈ Rn×n
+ depending linearly on y

2 View as y = PV(Hy ), where PV(·) Perron vector
(eigvec with |λ| = max) with suitable normalization

3 Solve y = PV(Hy ) with fixed-point/Newton iteration

Convergence does not get slower when xmin ≈ e

We have “deflated” the known solution x = e
Not “close to a double solution” anymore

Problems

Convergence conditions (ok in all practical cases, but not globally)
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A unifying framework

Why is this promising?

Mx=a+b(x,x)

XCX − AX − XD + B = 0 (NARE)

PX 2 + QX + R = 0 (UQME){
I x = (Py) .*x + ones(n, 1)

I y = (Qx) .*y + ones(n, 1)
(SE)

With a bit of vec(·), all the previous equations fall into this case

Although no more known (x = e) solution → no PV-based algorithms

This insight leads to:

Unified (and sometimes more general) proofs for Fixed-point +
Newton – no spectral theory needed

Unified (and sometimes faster) algorithms
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Questions

Questions

Adapt SDA/CR to this framework

Adapt PV-based algorithms to NARE/UQME

Include spectral theory in this framework

Include shift
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Thanks for your attention!
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