Algorithms for quadratic matrix equations in probability

 With an eye to similarities with Control TheoryFederico Poloni
Scuola Normale Superiore, Pisa - Now @TU Berlin

TU Berlin, 29 April 2010

Everyone has problems

I will be at TU till June, 4
Looking forward to working \& discussing research problems (either yours or mine) close to my research area while I'm here

My problems

(1) Matrix equations in probability
(2) Matrix geometric means

This talk will be about \#1
... but first a very short mention to \#2

What I won't talk about

Problem A proper generalization of the geometric mean $\sqrt[k]{a_{1} a_{2} \ldots a_{k}}$ to positive definite (PD) matrices

Applications Averaging the results of physical experiments which return PD (or maybe even Hamiltonian, symplectic) matrices

Connections to the Riemannian geometry of PD matrices
It is tricky how to define properly a geometric mean of $n \geq 3$ matrices satisfying some intuitive properties (permutation invariance, monotonicity)

Problems

- No unique solution: which one is to prefer?
- How to compute them efficiently?
- Find new easier-to-compute means
[Ando, Li, Mathias 2004] [Moakher 2005] [Bini, Meini, P. 2010] + others

What I'll talk about

In applied probability, several analogous to the matrix equations you are studying at TU:

Examples

Nonsymmetric algebraic Riccati equation

$$
\begin{equation*}
X C X-A X-X D+B=0 \tag{NARE}
\end{equation*}
$$

Unilateral quadratic equation

$$
\begin{equation*}
P X^{2}+Q X+R=0 \tag{UQME}
\end{equation*}
$$

(\Leftrightarrow quadratic eigenvalue problems)
Solutions \Leftrightarrow invariant subspaces of suitable structured matrices/pencils.

What changes - eigenvalues

- No symmetry/structure \Rightarrow no eigenvalue symmetry, instead:

Eigenvalue splitting

NARE: Hamiltonian splitting
n eigval's in the right half-plane, n in the left
UQME: symplectic splitting
n eigval's inside the unit circle, n outside

- Looking for the solution corresponding to the eigval's in the right half-plane/inside the circle
- convergence depends on the gap between the closest pair of eigval's in opposite regions
- These eigval's are usually real (Perron-Frobenius theory)
- Eigval's on the border, but only in selected locations: 0,1 , roots of 1 Often we can remove them (we'll see later)
- Troubles: eigenvalues very close to the border (critical cases)

What changes - positivity

- New structure to preserve: positivity (entry-wise)
- Because of this, iterative methods are usually preferred to Schur form-based ones
- Schur-based exist, e.g. [Guo 2006], but more troubles with ill-conditioned cases
- Probabilists like algorithms with probabilistic interpretations
- They work with moderate sizes (for now), so we may use dense linear algebra - $O\left(n^{3}\right)$

Younger field, less understood than control theory
We could borrow some of your theory/tools

Nonsymmetric ARE

Nonsymmetric algebraic Riccati equation

$$
\begin{equation*}
X C X-A X-X D+B=0 \tag{NARE}
\end{equation*}
$$

with Hamiltonian splitting
Possible algorithms:

- Fixed-point iterations - slow convergence
- Newton's method - expensive: requires solving a "nonsymmetric Lyapunov" at each step
- Structured Doubling Algorithm (SDA) - much better SDA was born for control theory (DARE/CARE) [Anderson '78] [Chu, Fan, Lin 2005] but gained more success here

Outline of SDA

(1) Construct $H=\left[\begin{array}{ll}D & -C \\ B & -A\end{array}\right]$ (eigval's have Hamiltonian splitting)
(2) Cayley transform $S=\frac{H-\gamma I}{H+\gamma I}$ (symplectic splitting)
(3) Factor $S=\left[\begin{array}{cc}I & -G_{0} \\ 0 & F_{0}\end{array}\right]^{-1}\left[\begin{array}{cc}E_{0} & 0 \\ -H_{0} & I\end{array}\right]$
(9) Find $E_{1}, F_{1}, G_{1}, H_{1}$ of an analogous factorization of S^{2}
(3) Repeat: $S^{2^{k}}=\left[\begin{array}{cc}I & -G_{k} \\ 0 & F_{k}\end{array}\right]^{-1}\left[\begin{array}{cc}E_{k} & 0 \\ -H_{k} & I\end{array}\right]$

You can also think in terms of pencils: $\lambda\left[\begin{array}{cc}I & -G_{k} \\ 0 & F_{k}\end{array}\right]-\left[\begin{array}{cc}E_{k} & 0 \\ -H_{k} & I\end{array}\right]$

SDA - formulas and convergence

SDA

$$
\begin{gathered}
S^{2^{k}}=\left[\begin{array}{cc}
I & -G_{k} \\
0 & F_{k}
\end{array}\right]^{-1}\left[\begin{array}{cc}
E_{k} & 0 \\
-H_{k} & I
\end{array}\right] \quad \text { or } \lambda\left[\begin{array}{cc}
I & -G_{k} \\
0 & F_{k}
\end{array}\right]-\left[\begin{array}{cc}
E_{k} & 0 \\
-H_{k} & I
\end{array}\right] \\
E_{k+1}=E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
F_{k+1}=F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k} \\
G_{k+1}=G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} H_{k} E_{k} \\
H_{k+1}=H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k}
\end{gathered}
$$

$E_{k} \rightarrow 0 \sim$ eigval's in the unit circle converge to zero $F_{k} \rightarrow 0 \sim$ eigval's outside the circle converge to eigval's at infinity $G_{k} \rightarrow X_{+}, H_{k} \rightarrow X_{-}$solutions associated with stable/unstable subspaces we only invert the "tame" matrices $I-G_{k} H_{k}, I-H_{k} G_{k}$

SDA vs. matrix sign iteration

Why is squaring the "right thing"?

SDA \Leftrightarrow matrix sign iteration - more robust implementation
Converges even with (multiple) eig'vals on the border (linear instead of quadratic convergence) [Guo, Lin +4 others, 2009]

Good accuracy even in critical cases, when $\left(I-G_{k} H_{k}\right) \rightarrow$ singular. Why?
Also works when X is not square (n eigval's left, m right)

Questions

Questions

- Scaling the matrix sign iteration inside SDA
- SDA for Lur'e equations? Work in progress with Timo...
- Weaker applicability conditions
- Other choices of the factorization/pencil
- Satisfying error theory
- Are SDA and Newton's method related?

Unilateral quadratic equations

Unilateral quadratic equation

$$
\begin{equation*}
P X^{2}+Q X+R=0 \tag{UQME}
\end{equation*}
$$

P and R might be (highly) singular
with symplectic splitting
Algorithms:

- No one attempted direct methods (linearization + Schur) as far as I know
- Fixed-point iterations - slow convergence
- Newton's method - expensive
- Cyclic Reduction (CR) - much better

CR was born for PDE [Golub, 70], rediscovered for these equations [Latouche, Ramaswami '93] [Bini, Meini '96]

Outline of CR

(1) Construct an equation for X^{2} :

$$
0=\left(P X^{2}+Q X+R\right) Q^{-1}\left(P X^{2}-Q X+R\right)=P_{1}\left(X^{2}\right)^{2}+Q_{1} X^{2}+R_{1}
$$

(2) Repeat

The pencil $\lambda^{2} P_{1}+\lambda Q_{1}+R_{1}$ has the same eigvec's as $\lambda^{2} P+\lambda Q+R$, but squared eigenvalues

CR - formulas and convergence

CR

$$
\begin{aligned}
& P_{k} \lambda^{2}+Q_{k} \lambda+R_{k} \\
P_{k+1}= & P_{k} Q_{k}^{-1} R_{k} \\
Q_{k+1}= & Q_{k}-P_{k} Q_{k}^{-1} R_{k}-R_{k} Q_{k}^{-1} P_{k} \\
R_{k+1}= & R_{k} Q_{k}^{-1} R_{k}
\end{aligned}
$$

$R_{k} \rightarrow 0 \sim$ eigval's in the unit circle converge to zero
$P_{k} \rightarrow 0 \sim$ eigval's outside the circle converge to eigval's at infinity (some expressions) $\rightarrow X_{ \pm}$, solutions associated with stable/unstable subspaces can be recovered
Converges even with (multiple) eig'vals on the border (linear instead of quadratic)

Good accuracy even in critical cases, when $Q_{k} \rightarrow$ singular

What's going on: SDA, CR and linearizations

Connections between them:

- Linearization

$$
\lambda^{2} P+\lambda Q+R \mapsto \lambda\left[\begin{array}{ll}
0 & I \\
R & 0
\end{array}\right]+\left[\begin{array}{cc}
P & 0 \\
Q & -I
\end{array}\right]
$$

followed by (a variant of) SDA yields CR [Guo, Lin + others 2009]

- Quadraticization

$$
\left[\begin{array}{cc}
I & -G_{0} \\
0 & F_{0}
\end{array}\right] \lambda-\left[\begin{array}{cc}
E_{0} & 0 \\
-H_{0} & I
\end{array}\right] \mapsto \lambda^{2}\left[\begin{array}{ll}
0 & 0 \\
0 & F
\end{array}\right]-\lambda\left[\begin{array}{cc}
I & -G \\
-H & I
\end{array}\right]+\left[\begin{array}{ll}
E & 0 \\
0 & 0
\end{array}\right]
$$

(adds n eigval's at $0, n$ at infinity) followed by CR yields SDA [Bini, Meini, P. 2008]

Questions

The same as SDA!

Questions

- Scaling the matrix sign iteration inside CR
- Weaker applicability conditions
- Other choices of the linearization
- Satisfying error theory
- Are CR and Newton's method related?

The shift technique

How to deal with eigval's on the border?

Theorem

Let (λ, v) be an eigenpair of H; for each μ, u

$$
\widetilde{H}=H+\mu v u^{T}
$$

has the same eigval's of H, except λ becomes $\lambda+\mu$
Solutions to the matrix eqns change in predictable ways (or in some cases do not change at all)

Eigvec's associated with 0 (or 1) are known or simple to compute shifting of 0 (1) eigval's is customary [He, Meini, Rhee 2001]

Shift for critical cases

Recently we tried to compute directly critical eigenspaces even for eigval's close to the border and shift them away [lannazzo, P. submitted]

You can do most of the job working with well-conditioned eigenspaces instead of ill-conditioned eigenpairs

Mixed method: partly direct eig computation, partly iteration

Questions

- Better ways to compute the critical eigenspaces (Arnoldi variants?)
- Detailed error analysis - some parts are $O(\sqrt{\epsilon})$, some are $O(\epsilon)$

Lu's "simple equation"

A vector equation arising from a rank-structured NARE

Lu's equation

$$
\begin{aligned}
& x=(P y) \cdot * x+\operatorname{ones}(n, 1) \\
& y=(Q x) \cdot * y+\operatorname{ones}(n, 1)
\end{aligned}
$$

$$
x, y \in \mathbb{R}_{+}^{n} \text { unknowns }
$$

You can use displacement rank-structured linear algebra and perform iterative algorithms (SDA, Newton) in $O\left(n^{2}\right)$ ops/step [Bini, lannazzo, P. 2008]
... or you can recover the solution explicitly after computing the eigenvalues [Mehrmann, Xu 2008]

But how do they compute the eigenvalues? Through a quadratically convergent $O\left(n^{2}\right)$ ops/step iteration

Question

Are these iterative and "direct" methods related?

Markovian binary trees

MBT equation

$$
x=a+b(x, x)
$$

$a, x \in \mathbb{R}_{+}^{n}$ and $b: \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}^{n}$ vector-valued bilinear map
$e:=$ ones $(n, 1)$ always a solution, but we want the minimal nonnegative
Algorithms:

- Fixed-point iterations - always slow
- Newton's method - slow convergence when $x_{\text {min }} \approx e$

New algorithm: Perron vector-based iterations [Bini, Meini, P. submitted]

Outline of PV-based

(1) Change of vars $y:=e-x$ yields

$$
y=\left(H_{y}\right) y, \quad H_{y} \in \mathbb{R}_{+}^{n \times n} \text { depending linearly on } y
$$

(2) View as $y=\mathrm{PV}\left(H_{y}\right)$, where $\mathrm{PV}(\cdot)$ Perron vector (eigvec with $|\lambda|=\max$) with suitable normalization
(3) Solve $y=\mathrm{PV}\left(H_{y}\right)$ with fixed-point/Newton iteration

Convergence does not get slower when $x_{\text {min }} \approx e$
We have "deflated" the known solution $x=e$
Not "close to a double solution" anymore

Problems

- Convergence conditions (ok in all practical cases, but not globally)

A unifying framework

Why is this promising?

$$
\begin{gather*}
M \mathrm{x}=\mathrm{a}+\mathrm{b}(\mathrm{x}, \mathrm{x}) \\
X C X-A X-X D+B=0 \tag{NARE}\\
P X^{2}+Q X+R=0 \tag{UQME}\\
\left\{\begin{array}{l}
l x=(P y) \cdot{ }^{*} x+\operatorname{ones}(n, 1) \\
l y=(Q x) \cdot{ }^{*} y+\operatorname{ones}(n, 1)
\end{array}\right. \tag{SE}
\end{gather*}
$$

With a bit of $\operatorname{vec}(\cdot)$, all the previous equations fall into this case
Although no more known $(x=e)$ solution \rightarrow no PV-based algorithms
This insight leads to:

- Unified (and sometimes more general) proofs for Fixed-point + Newton - no spectral theory needed
- Unified (and sometimes faster) algorithms

Questions

Questions

- Adapt SDA/CR to this framework
- Adapt PV-based algorithms to NARE/UQME
- Include spectral theory in this framework
- Include shift

Thanks for your attention!

