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What is a matrix geometric mean?
A map (Hermitian (S)PD matrices)n → Hermitian (S)PD matrices
satisfying 10 properties: [Ando, Li, Mathias ’04]

Consistency with scalars if A, B, C commute, G(A,B,C) = A1/3B1/3C1/3

Permutation invariance G(A,B,C) = G(A,C ,B) = G(B,A,C) = . . .

Joint homogeneity G(αA,B,C) = α1/3G(A,B,C)

Monotonicity A ≤ A′ ⇒ G(A,B,C) ≤ G(A′,B,C)

Congruence invariance PG(A,B,C)P∗ = G(PAP∗,PBP∗,PCP∗)
+ others self-duality, concavity. . .

n = 2
The mean of two matrices is A#t B := A(A−1B)t for t = 1/2

n ≥ 3
Many answers. . .

F. Poloni (TU Berlin) No free mean ILAS 2011 2 / 20



Composing matrix geometric means

A common way to generate new functions that “behave like matrix
geometric means” is composing means of less variables. . .

G(A,B,A#C)

A B A#C

A C

(G=any mean of 3 matrices)

This includes many studied means:
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Ando–Li–Mathias mean [Ando, Li, Mathias ’04]

A B C

A#B A#C B #C

...
...

...
Repeat until convergence
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Pálfia’s “graph-based” mean [Pálfia, ’05 & ’11]

A B C D

A#B B #C C #D D #A

...
...

...
...

Repeat until convergence

Does not respect permutation invariance: G(A,B,C ,D) 6= G(B,A,C ,D)
in general!
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Cubically convergent mean [Nakamura, ’09] [Bini, Meini, P. ’10]

A B C

B #C C #A A#B

A#2/3(B #C) B #2/3(C #A) C #2/3(A#B)

2
3

1
3 2

3

1
3 2

3

1
3

...
...

...
Repeat until convergence
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Cost of existing means

ALM and BMP satisfy all ten “geometric mean” properties, but are
expensive to compute:

need a limit process
every “iteration” requires n means of n − 1 variables
⇒ computing a mean of n matrices requires O(n! · steps) operations

The mean proposed by Pálfia is cheaper to compute, but does not satisfy
permutation invariance

Question
Are there means that are cheaper than O(n! · steps), and satisfy all axioms?

Maybe we just need to look more carefully. . .
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For instance. . .

∗

∗

A B

∗

C D

∗

∗

A C

∗

B D

∗

∗

A D

∗

B C

Tournament mean: consider all 3 essentially different “tennis tournament”
arrangements of 4 matrices, and average them [P., ’10]

Satisfies ALM properties, significantly cheaper than existing 4-means
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Composing existing means

What is easy and what is hard in assembling existing means?

Most properties carry over easily to function composition (concavity,
congruence invariance. . . )
Some need to be adapted, since weights ( 1

n ,
1
n , . . . ,

1
n ) are

“hardcoded” in the ALM properties
e.g., if G(A,B,C) := (A#B)#C , then

G(αA, βB, γC) = α1/4β1/4γ1/2G(A,B,C)

Important exception: permutation invariance doesn’t hold in general!

It is not easy to construct permutation-invariant means by composition
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Quasi-means

Definition
A quasi-mean is a function satisfying a modified set of ALM properties:

Allow for different “weights” in some axioms, e.g.

G(αA, βB, γC) = αw1βw2γw3G(A,B,C)

Do not require permutation invariance

Easy to prove that:
Composition and limit of quasi-means are quasi-means
Quasi mean+ permutation invariance = geometric mean
(all 10 properties would hold)
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Invariance groups
Some permutation invariance properties follow from those of the
underlying means:

∗

∗

A B

∗

C D

∗

∗

B A

∗

C D

∗

∗

C D

∗

A B

Definition
The invariance group of a quasi-mean is the group of permutations of its
arguments that leave it unchanged
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Invariance groups

Definition
The invariance group inv(G) of a quasi-mean is the group of permutations
of its arguments that leave it unchanged

E.g., inv(previous slide) = dihedral group D4 (symmetries of a square)

it must be a group (closed by composition. . . )

What can we deduce on inv() of “composite means” based on inv() of
their components?

First, some reductions. . .
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Simplifying the problem

Only two levels

∗

∗

A B

∗

A B C

C

Only compositions where the means in the “upper level” are the
same, up to permutation of their arguments — they have larger inv()

∗

∗

A B

∗

B C

∗

C A

may assume it’s all such permutations (add dummy arguments)
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Some group theory

Theorem [P., ’10]

Let H = inv(upper means), G = inv(lower mean), ρH(σ) = action of σ on
the left cosets {Hτ}, K the largest group s.t. ρH(K ) ⊆ G . Then,
K ⊆ inv(composition)

Describes all the symmetry properties deriving from the “base means”

+

Known fact
For n ≥ 5, the group of all even permutations An (of size n!

2 ) is simple

=
. . .
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There ain’t no free mean

Theorem
If we can prove using the theorem that An ⊆ inv(composition), then either
An ⊆ inv(upper means) or An ⊆ inv(lower mean)

i.e., we cannot hope to find a geometric mean by composing means of less
matrices and playing with their symmetry properties

A (finite) “composition-based” matrix geometric mean isn’t impossible,
but would require new techniques

Ok, but all “named means” are based on a limit process; what about
them?
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Considering limit processes

A B C

F1(A,B,C) F2(A,B,C) F3(A,B,C)

Some operation combining A, B, C

...
...

...
Repeat until convergence

Again, we wish to abstract all “symmetry properties” proofs in this setting
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Group preservation
Definition
Let G be a permutation subgroup. The limit process preserves G if
permuting the inputs according to σ ∈ G , we obtain the same outputs
permuted according to τ ∈ G

A B C

F1 F2 F3

B C A

F3 F2 F1

some permutation in G

some other permutation in G
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“No free mean” for limits

Theorem [P., ’10]

If a quasi-mean limit process preserves G (and its component converge to
a common limit), then G ⊆ inv(limit mean)

Extends all the existing proofs

+

Known fact
The only “large” subgroups of the permutation group Sn are An and Sn−1

=
. . .
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“No free mean” for limits

Theorem
If a limit process preserves G = Sn, then either

inv(Fi) ⊆ An for some i (one of the components was already
“almost” a n-mean)
inv(Fj) ⊆ Sn−1 for all j (n means of n− 1 matrices, à la ALM/BMP)

Again, the existing techniques cannot be improved

Nothing better than O(n! · steps)
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Conclusions

The existing techniques cannot yield anything essentially cheaper
than the existing means, for n ≥ 5
For n = 4, our “tournament mean” is cheaper than ALM/BMP
After the work in [Lawson, Lim ’10 arXiv], another nail in the coffin of
ALM-like, composition-based means
Need new techniques, or new means, to break the O(n! · steps) barrier

Interesting question: is there a quasi-mean F with inv(F ) = An?

Thanks for your attention!

F. Poloni, Constructing matrix geometric means.
Electr. J. Linear Algebra 20 (2010)
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