Some implementation issues on the GKO algorithm

Federico Poloni ${ }^{1,2}$
From discussions with: A. Aricò, D. Bini, V. Olshevsky
${ }^{1}$ Dipartimento di Matematica
Università di Pisa
${ }^{2}$ Scuola Normale Superiore, Pisa
Cortona, 17 September 2008

Introduction

Our problem Solution of a matrix equation (NARE) with Cauchy-like matrices
(but I am not talking about this)

- Matrix iterations working on Cauchy-like matrices
- Led us to investigate on the existing algorithms - GKO
- Some (small) results that could be interesting also outside our problem

Cauchy-like matrices

Definition

C is Cauchy-like if there are $D_{x}=\operatorname{diag}(x), D(y)=\operatorname{diag}(y)$ such that

$$
D_{x} C-C D_{y}=G \cdot B=\square \cdot \square \quad(\text { rank } r \ll n)
$$

If $x_{i} \neq y_{j}$, then $C_{i j}$ can be recovered from the generators:

$$
C_{i j}=\frac{G(i,:) \cdot B(:, j)}{x_{i}-y_{j}}
$$

If this is not always possible, C is partially reconstructible Notable example: $(r=2)$ from Toeplitz matrices, after a Fourier change of base

GKO: the idea

GKO algorithm [Gohberg-Kailath-Olshevsky, '95]

Theorem

The Schur complement of a Cauchy-like matrix is Cauchy-like. Its generators are a rank-1 update of $G(2: n,:)$ and $B(:, 2: n)$.

Gaussian elimination working on G and B only, reconstructing elements when needed

GKO step by step

$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$

$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$	\quad	b_{1}
:---							
b_{2}							
b_{3}							
b_{4}							
b_{5}							
b_{6}							

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B

GKO step by step

$u_{11} u_{12} u_{13} u_{14} u_{15} u_{16}$					y_{1}
*	*	*	*	*	*
	*	*	*	*	*
	*	*	*	*	*
	*	*	*	*	*
	*	*	*		*

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B

GKO step by step

$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$

$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$

$u_{11} u_{12} u_{13} u_{14} u_{15} u_{16}$	y_{1}
$u_{22} u_{23} u_{24} u_{25} u_{26}$	y_{2}
* * * *	*
* * * *	*
* * * *	*
* * * *	*

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B

GKO step by step

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B

GKO step by step

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B

GKO step by step

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B

GKO step by step

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B and finally...

GKO step by step

- reconstruct first column of L and use it to solve $L y=b$ incrementally
- reconstruct first row of U and store it
- update the generators G and B and finally...
- solve $U x=y$ by back-substitution

GKO step by step

Problem We need to store U

- Why $O\left(n^{2}\right)$ temporaries for $O(n)$ input and output size?
- The maximum size that fits in memory is reduced
- Slower memory access (cache misses matter)

A solution: the extended matrix

Idea: first in [Kailath-Chun, '94], fully exploited by [Rodriguez, '06] Matlab code [Aricò-Rodriguez]
$x=C^{-1} b$ is the Schur complement of the first block in

$$
\left[\begin{array}{cc}
C & b \\
-I & 0
\end{array}\right]
$$

(b may be either $n \times 1$ or $n \times s$, multiple right-hand side)

- n steps of GKO on the extended matrix
- mixed Gaussian elimination: 1st column=GKO, 2nd column=traditional
- $-I$ is partially reconstructible Cauchy-like wrt $\operatorname{diag}(y), \operatorname{diag}(y)$
- you need not store the matrix U

Extended matrix GKO step by step

$*$	$*$	$*$	$*$	$*$	$*$	b_{1}
$*$	$*$	$*$	$*$	$*$	$*$	b_{2}
$*$	$*$	$*$	$*$	$*$	$*$	b_{3}
$*$	$*$	$*$	$*$	$*$	$*$	b_{4}
$*$	$*$	$*$	$*$	$*$	$*$	b_{5}
$*$	$*$	$*$	$*$	$*$	$*$	b_{6}
-1						
	-1					
		-1				
			-1			
				-1		
					-1	

Extended matrix GKO step by step

$*$	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
-1					
	-1				
			-1		
			-1		
				-1	

Extended matrix GKO step by step

*	*	*	*	*	*	*		
	*	*	*	*	*	*		
		*	*	*	*	*		*
		*	*	*	*	*		*
		*	*	*	*	*		*
		*	*		*	*		
		*	*		*	*		*
		*	*		*	*		*
		-1						
			-1					
				-				
						-1		

Extended matrix GKO step by step

$*$	$*$	$*$	$*$	$*$	$*$	y_{1}
	$*$	$*$	$*$	$*$	$*$	y_{2}
		$*$	$*$	$*$	$*$	y_{3}
			$*$	$*$	$*$	$*$
			$*$	$*$	$*$	$*$
			$*$	$*$	$*$	$*$
			$*$	$*$	$*$	$*$
			$*$	$*$	$*$	$*$
			$*$	$*$	$*$	$*$
			-1			
				-1		
					-1	

Extended matrix GKO step by step

$*$	$*$	$*$	$*$	$*$	$*$	y_{1}
	$*$	$*$	$*$	$*$	$*$	y_{2}
		$*$	$*$	$*$	$*$	y_{3}
			$*$	$*$	$*$	y_{4}
				$*$	$*$	$*$
			$*$	$*$	$*$	
					$*$	$*$
					$*$	$*$
				$*$	$*$	$*$
				$*$	$*$	$*$
			$*$	$*$	$*$	
					-1	

Extended matrix GKO step by step

Extended matrix GKO step by step

* *						
* *						
* *						
* *						
* *						
* *				*		
* *						*
* *						
* *						
* *						
* *						
* *						

Extended matrix GKO step by step

$*$	$*$	$*$	$*$	$*$	$*$	y_{1}
	$*$	$*$	$*$	$*$	$*$	y_{2}
	$*$	$*$	$*$	$*$	y_{3}	
		$*$	$*$	$*$	y_{4}	
			$*$	$*$	y_{5}	
				$*$	y_{6}	
						x_{1}
x_{2}						
					x_{3}	
x_{4}						
x_{5}						
x_{6}						

Extended matrix GKO

Notice:

- In the - I block, we divide by $y_{i}-y_{j}$ (with $j>i$): y must be injective (true in most applications)
- The - / block diagonal is not reconstructible Luckily whenever we need an element, it is -1
Cost: $6 r n^{2}$ instead of $4 r n^{2}$ flops of original GKO ($+2 n^{2} s$ for back-substitutions with a $n \times s$ right-hand side)
but only $2 n$ buffer space is needed
In practice, faster for large values of n

Another solution: the back-and-forth method

At each GKO step, we discard the top row of G and column of B : $G(k,:), B(:, k)$
In practice, they stay in memory (no unnecessary allocations!) Idea: can we use these to undo one GKO step?

Another solution: the back-and-forth method

- $u_{k k}$ (pivot) can be recovered: $u_{k k}=\frac{G(k,:) B(:, k)}{x_{k}-y_{k}}$
- So can the rest of the u-row, using the value of B after step k :

$$
u_{k \ell}=\frac{G(k,:) B_{\text {before }}(:, \ell)}{x_{k}-y_{\ell}}=\frac{G(k,:) B_{\text {after }}(:, \ell)}{y_{k}-y_{\ell}}
$$

- Using u-row and $B_{\text {after }}$, we can undo the update to get $B_{\text {before }}$

Back-and-forth GKO step by step

$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

$u_{11} u_{12} u_{13} u_{14} u_{15} u_{16}$				
$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$

y_{1}
$*$
$*$
$*$
$*$
$*$

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

$$
\begin{array}{r}
u_{11} u_{12} u_{13} u_{14} u_{15} u_{16} \\
u_{22} u_{23} u_{24} u_{25} u_{26}
\end{array}
$$

y_{1}
y_{1}
$*$
$*$
$*$
$*$

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

- GKO as usual
- Keep in memory the old parts of G and B
- Do not keep the old $u_{i j}$'s

Back-and-forth GKO step by step

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO step by step

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO step by step

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO step by step

$\begin{array}{r} u_{11} u_{12} u_{13} u_{14} u_{15} u_{16} \\ u_{22} u_{23} u_{24} u_{25} u_{26} \end{array}$
$u_{33} u_{34} u_{35} u_{36}$
* * * *
* * * *
* * * *

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO step by step

$u_{11} u_{12} u_{13} u_{14} u_{15} u_{16}$				
$u_{22} u_{23} u_{24} u_{25} u_{26}$				
	*	*	*	
	*	*	*	
	*	*		

y_{1}
x_{2}
x_{3}
x_{4}
x_{5}
x_{6}

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO step by step

$u_{11} u_{12} u_{13} u_{14} u_{15} u_{16}$					
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$

x_{1}
x_{2}
x_{3}
x_{4}
x_{5}
x_{6}

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO step by step

$u_{11} u_{12} u_{13} u_{14} u_{15} u_{16}$					
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$

x_{1}
x_{2}
x_{3}
x_{4}
x_{5}
x_{6}

For $k=n$ to 1 :

- Reconstruct the k th row of u
- Use it to solve the k th equation of $U x=y$ by back-substitution
- "downdate" B to its old value at step k of GKO

Back-and-forth GKO: considerations

- "downdate" of G is not needed
- cost: $6 r n^{2}$: same as Extended Matrix
- memory: input size $+2 n$ temps: same as Extended Matrix
- both require $y_{i} \neq y_{j}$ for $i \neq j$
- similar numerical behaviour

Are they the same algorithm? No:
Key questions: where is L in Extended Matrix? Where is U ?

Extended Matrix - where are L and U ?

L: upper part as in GKO

EM vs. BF: numerical experiments

n	EM	BF	rors	EM	BF
10	1.6E-12	$1.6 \mathrm{E}-12$	10	7.9E-11	$6.9 \mathrm{E}-11$
100	1.4E-05	1.4E-05	100	2.0E-07	$1.0 \mathrm{E}-07$
500	8.0E-01	$8.0 \mathrm{E}-01$	500	1.3E-07	1.2E-07
ill-conditioned Cauchy-like nodes $=1+0.3(i-j)$			Gaussian Toeplitz$a=0.9$		

Caveat: not to be taken too seriously:

- Implementation matters, small optimizations = huge differences
- Processor, cache size, cache efficiency issues

EM vs. BF: numerical experiments

EPU time			
n	EM	BF	plain
100	$1.3 \mathrm{E}-03$	$1.2 \mathrm{E}-03$	$8.5 \mathrm{E}-04$
1000	$1.1 \mathrm{E}-01$	$9.7 \mathrm{E}-02$	$8.6 \mathrm{E}-02$
3000	$1.03 \mathrm{E}+00$	$8.6 \mathrm{E}-01$	$1.7 \mathrm{E}+00$
10000	$1.3 \mathrm{E}+01$	$1.0 \mathrm{E}+01$	$3.5 \mathrm{E}+01$

Caveat: not to be taken too seriously:

- Implementation matters, small optimizations = huge differences
- Processor, cache size, cache efficiency issues

EM vs. BF: other factors

- BF: a posteriori error estimate: did we reconstruct the original generators properly?
LU stability + generator growth
- BF: preview of the solution: after part 1, the entries of x arrive one at each step.
In Toeplitz computations, lower-sampled "preview"
- BF: the inner steps take less memory (vs. EM: every step takes $2 n r$ memory)
Should fit better into cache

Trummer-like matrices: definitions

Definition

A Trummer-like matrix is a Cauchy-like matrix in which the non-reconstructible entries are the diagonal ones, i.e.

$$
D_{x} T-T D_{x}=G \cdot B=\square \cdot \square \quad(\text { rank } r \ll n)
$$

Appear in many contests:

- Trummer's problem [Gerasoulis et al., 88]
- Toeplitz computations, e.g. [Kailath-Olshevsky '97]
- Integral equations, e.g. the matrix equation we were solving

Displacement rank and algorithms

How to store them?

- Store generators G, B as every Cauchy-like matrix, and
- Store the diagonal separately

Structure is preserved
If $\operatorname{TRk}(T):=\operatorname{Rk}\left(D_{x} T-T D_{x}\right)$

- $\operatorname{TRk}(T+S)=\operatorname{TRk}(T)+\operatorname{TRk}(S)$
- $\operatorname{TRk}(T S)=\operatorname{TRk}(T)+\operatorname{TRk}(S)$
- $\operatorname{TRk}\left(T^{-1}\right)=\operatorname{TRk}(T)$

Our goal: space-efficient fast Trummer-like matrix computations:
$T \cdot v, T \cdot S, T^{-1} \cdot v, T^{-1} \cdot S$

Matrix-vector operations

Matrix-vector product: easy! Recover T from its generators one row at a time, apply traditional M -v algorithm Linear system solving $T^{-1} v$ idea in [Kailath-Olshevsky, '97]: Traditional GKO + store and update diagonal elements separately

$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$
$*$	$*$

$*$	$*$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	$*$	$*$

Matrix-matrix operations

Let $\nabla T:=D_{x} T-T D_{x}$
Matrix-matrix product $T \cdot S$

- generators: $\nabla(T S)=T \nabla(S)+\nabla(T) S$
- diagonal: recover and multiply

Inverse T^{-1} (and product $T^{-1} \cdot S$)

- generators: $\nabla\left(T^{-1}\right)=-T^{-1} \nabla(T) T^{-1}$
- diagonal: ??

No obvious algorithm to get $\operatorname{diag}\left(T^{-1}\right)$

How to get $\operatorname{diag}\left(T^{-1}\right)$?

Entries of U^{-1} : explicitly available with the Extended Matrix version of GKO
k th step: k th column of U^{-1}

Entries of L^{-1} : repeat on T^{T} : the $L U$ factors of T^{T} are $U^{T} L^{T}$ (up to diagonal scaling with the pivots)
k th step: k th row of L^{-T}
We get the right entries at the right time to compute the diagonal:

$$
U^{-1} L^{-1}=\begin{array}{|cccc}
1 & 2 & 3 & 4 \\
& 2 & 3 & 4 \\
& & 3 & 4 \\
& & & 4
\end{array} \left\lvert\, \begin{array}{|llll}
\begin{array}{|llll}
1 & & & \\
2 & 2 & & \\
3 & 3 & 3 & \\
4 & 4 & 4 & 4
\end{array} \\
\hline
\end{array}\right.
$$

Implementing GKO+invdiag

Not exactly GKO twice: many computations are the same

$$
\text { Schur_compl }\left(T^{T}\right)=\left[\operatorname{Schur} _\operatorname{compl}(T)\right]^{T}
$$

- GKO is born symmetric: given generators of T, compute generators of Schur_compl(T) - $4 r n^{2}$ ops
- EM version: some extra work on $G-6 r n^{2}$ ops
- Now we restore symmetry by doing the same on $B-8 r n^{2}$ ops In $(12 r+3) n^{2}$ ops we can build a full set of generators for T^{-1} :
- Solve $G^{\prime}=T^{-1} G$
- Solve $B^{\prime}=T^{-T} B$
- Compute $\operatorname{diag}\left(T^{-1}\right)$ with the above algorithm

Some numerical results

GKO+invdiag vs. a simpler strategy: choose v,

$$
T^{-1} v=\operatorname{diag}\left(T^{-1}\right) v+\left[T^{-1}-\operatorname{diag}\left(T^{-1}\right)\right] v
$$

- $T^{-1} v$ computed with GKO
- $\left[T^{-1}-\operatorname{diag}\left(T^{-1}\right)\right] v$ computed easily from the generators
- solve for $\operatorname{diag}\left(T^{-1}\right) v$

This strategy loses accuracy because of cancellation errors:

n	GKO+invdiag	solve for $\operatorname{diag}\left(T^{-1}\right) v$
10	$4.4 \mathrm{E}-16$	$5.8 \mathrm{E}-15$
100	$2.6 \mathrm{E}-14$	$1.4 \mathrm{E}-11$
500	$1.4 \mathrm{E}-12$	$3.9 \mathrm{E}-10$
10	$4.2 \mathrm{E}-15$	$1.2 \mathrm{E}-08$
50	$9.0 \mathrm{E}-08$	$1.6 \mathrm{E}-02$

(random-generated Trummer-like M-matrices, diag+rank-1 matrices)

To sum up

- New $O(n)$-storage GKO version (Back-and-forth) Competitive with EM, some nice +'s
- GKO+invdiag to get $\operatorname{diag}\left(T^{-1}\right)$ for a Trummer-like T Allows fast Trummer-like matrix computations Also works when $\operatorname{diag}(T)$ is reconstructible but ill-conditioned

To sum up

- New $O(n)$-storage GKO version (Back-and-forth) Competitive with EM, some nice +'s
- GKO+invdiag to get $\operatorname{diag}\left(T^{-1}\right)$ for a Trummer-like T Allows fast Trummer-like matrix computations Also works when $\operatorname{diag}(T)$ is reconstructible but ill-conditioned

Thank you for your attention

