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Introduction

Our problem Solution of a matrix equation (NARE) with
Cauchy-like matrices

(but I am not talking about this)

• Matrix iterations working on Cauchy-like matrices

• Led us to investigate on the existing algorithms – GKO

• Some (small) results that could be interesting also outside our
problem



Cauchy-like matrices

Definition

C is Cauchy-like if there are Dx = diag(x), D(y) = diag(y) such
that

DxC − CDy = G · B = · (rank r � n)

If xi 6= yj , then Cij can be recovered from the generators:

Cij =
G (i , :) · B(:, j)

xi − yj

If this is not always possible, C is partially reconstructible

Notable example: (r = 2) from Toeplitz matrices, after a Fourier
change of base



GKO: the idea

GKO algorithm [Gohberg–Kailath–Olshevsky, ’95]

Theorem

The Schur complement of a Cauchy-like matrix is Cauchy-like.
Its generators are a rank-1 update of G (2:n, :) and B(:, 2:n).

Gaussian elimination working on G and B only, reconstructing
elements when needed



GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
incrementally

• reconstruct first row of U and store it

• update the generators G and B



GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
incrementally

• reconstruct first row of U and store it

• update the generators G and B



GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
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GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
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• reconstruct first row of U and store it

• update the generators G and B
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• reconstruct first column of L and use it to solve Ly = b
incrementally

• reconstruct first row of U and store it

• update the generators G and B



GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
incrementally

• reconstruct first row of U and store it

• update the generators G and B



GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
incrementally

• reconstruct first row of U and store it

• update the generators G and B

and finally. . .



GKO step by step
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• reconstruct first column of L and use it to solve Ly = b
incrementally

• reconstruct first row of U and store it

• update the generators G and B

and finally. . .

• solve Ux = y by back-substitution



GKO step by step
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Problem We need to store U

• Why O(n2) temporaries for O(n) input and output size?

• The maximum size that fits in memory is reduced

• Slower memory access (cache misses matter)



A solution: the extended matrix

Idea: first in [Kailath–Chun, ’94], fully exploited by [Rodriguez, ’06]
Matlab code [Aricò–Rodriguez]

x = C−1b is the Schur complement of the first block in[
C b
−I 0

]
(b may be either n × 1 or n × s, multiple right-hand side)

• n steps of GKO on the extended matrix

• mixed Gaussian elimination: 1st column=GKO,
2nd column=traditional

• −I is partially reconstructible Cauchy-like wrt diag(y), diag(y)

• you need not store the matrix U



Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO step by step
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Extended matrix GKO

Notice:

• In the −I block, we divide by yi − yj (with j > i):
y must be injective (true in most applications)

• The −I block diagonal is not reconstructible
Luckily whenever we need an element, it is −1

Cost: 6rn2 instead of 4rn2 flops of original GKO
(+2n2s for back-substitutions with a n × s right-hand side)

but only 2n buffer space is needed
In practice, faster for large values of n



Another solution: the back-and-forth method

∗ ∗
∗ ∗
∗ ∗
∗ ∗
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∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

u11u12u13u14u15u16
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0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
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∗
∗
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At each GKO step, we discard the top row of G and column of B:
G (k , :), B(:, k)
In practice, they stay in memory (no unnecessary allocations!)
Idea: can we use these to undo one GKO step?



Another solution: the back-and-forth method
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• ukk (pivot) can be recovered: ukk = G(k,:)B(:,k)
xk−yk

• So can the rest of the u-row, using the value of B after step k :

uk` =
G (k , :)Bbefore(:, `)

xk − y`
=

G (k , :)Bafter (:, `)

yk − y`

• Using u-row and Bafter , we can undo the update to get Bbefore



Back-and-forth GKO step by step
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∗ ∗ ∗ ∗ ∗ ∗
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• GKO as usual

• Keep in memory the old parts of G and B

• Do not keep the old uij ’s



Back-and-forth GKO step by step
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• GKO as usual

• Keep in memory the old parts of G and B

• Do not keep the old uij ’s



Back-and-forth GKO step by step
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• GKO as usual

• Keep in memory the old parts of G and B

• Do not keep the old uij ’s



Back-and-forth GKO step by step
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• GKO as usual

• Keep in memory the old parts of G and B

• Do not keep the old uij ’s



Back-and-forth GKO step by step
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• Keep in memory the old parts of G and B

• Do not keep the old uij ’s



Back-and-forth GKO step by step
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Back-and-forth GKO step by step
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• GKO as usual

• Keep in memory the old parts of G and B

• Do not keep the old uij ’s



Back-and-forth GKO step by step
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For k = n to 1:
• Reconstruct the kth row of u

• Use it to solve the kth equation of Ux = y by
back-substitution

• “downdate” B to its old value at step k of GKO



Back-and-forth GKO step by step
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• “downdate” B to its old value at step k of GKO
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back-substitution
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For k = n to 1:
• Reconstruct the kth row of u

• Use it to solve the kth equation of Ux = y by
back-substitution

• “downdate” B to its old value at step k of GKO



Back-and-forth GKO step by step

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

u11u12u13u14u15u16

u22u23u24u25u26

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

y1

x2

x3

x4

x5

x6

For k = n to 1:
• Reconstruct the kth row of u

• Use it to solve the kth equation of Ux = y by
back-substitution

• “downdate” B to its old value at step k of GKO



Back-and-forth GKO step by step

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

u11u12u13u14u15u16

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

x1

x2

x3

x4

x5

x6

For k = n to 1:
• Reconstruct the kth row of u

• Use it to solve the kth equation of Ux = y by
back-substitution

• “downdate” B to its old value at step k of GKO



Back-and-forth GKO step by step
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For k = n to 1:
• Reconstruct the kth row of u

• Use it to solve the kth equation of Ux = y by
back-substitution

• “downdate” B to its old value at step k of GKO



Back-and-forth GKO: considerations

• “downdate” of G is not needed

• cost: 6rn2: same as Extended Matrix

• memory: input size + 2n temps: same as Extended Matrix

• both require yi 6= yj for i 6= j

• similar numerical behaviour

Are they the same algorithm? No:

Key questions: where is L in Extended Matrix? Where is U?



Extended Matrix – where are L and U?

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ y1

∗ ∗ ∗ ∗ ∗ y2

∗ ∗ ∗ ∗ y3

u44 ∗ ∗ y4

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

v14 ∗ ∗ ∗
v24 ∗ ∗ ∗
v34 ∗ ∗ ∗
-1

-1
-1

L: upper part as in GKO U : (U−1)ij = − vij

ujj



EM vs. BF: numerical experiments

Forward errors
n EM BF

10 1.6E-12 1.6E-12
100 1.4E-05 1.4E-05
500 8.0E-01 8.0E-01

ill-conditioned Cauchy-like
nodes=1 + 0.3(i − j)

n EM BF

10 7.9E-11 6.9E-11
100 2.0E-07 1.0E-07
500 1.3E-07 1.2E-07

Gaussian Toeplitz
a = 0.9

Caveat: not to be taken too seriously:

• Implementation matters, small optimizations = huge
differences

• Processor, cache size, cache efficiency issues



EM vs. BF: numerical experiments

CPU time
n EM BF plain

100 1.3E-03 1.2E-03 8.5E-04
1000 1.1E-01 9.7E-02 8.6E-02
3000 1.03E+00 8.6E-01 1.7E+00

10000 1.3E+01 1.0E+01 3.5E+01

Caveat: not to be taken too seriously:

• Implementation matters, small optimizations = huge
differences

• Processor, cache size, cache efficiency issues



EM vs. BF: other factors

• BF: a posteriori error estimate: did we reconstruct the original
generators properly?
LU stability + generator growth

• BF: preview of the solution: after part 1, the entries of x
arrive one at each step.
In Toeplitz computations, lower-sampled “preview”

• BF: the inner steps take less memory (vs. EM: every step
takes 2nr memory)
Should fit better into cache



Trummer-like matrices: definitions

Definition

A Trummer-like matrix is a Cauchy-like matrix in which the
non-reconstructible entries are the diagonal ones, i.e.

DxT − TDx = G · B = · (rank r � n)

Appear in many contests:

• Trummer’s problem [Gerasoulis et al., 88]

• Toeplitz computations, e.g. [Kailath–Olshevsky ’97]

• Integral equations, e.g. the matrix equation we were solving



Displacement rank and algorithms

How to store them?

• Store generators G , B as every Cauchy-like matrix, and

• Store the diagonal separately

Structure is preserved

If TRk(T ) := Rk(DxT − TDx)

• TRk(T + S) = TRk(T ) + TRk(S)

• TRk(TS) = TRk(T ) + TRk(S)

• TRk(T−1) = TRk(T )

Our goal: space-efficient fast Trummer-like matrix computations:
T · v , T · S , T−1 · v , T−1 · S



Matrix-vector operations

Matrix–vector product: easy! Recover T from its generators one
row at a time, apply traditional M-v algorithm
Linear system solving T−1v idea in [Kailath–Olshevsky, ’97]:
Traditional GKO + store and update diagonal elements separately

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

u11u12u13u14u15u16

u22u23u24u25u26

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

y1

y2

∗
∗
∗
∗



Matrix–matrix operations

Let ∇T := DxT − TDx

Matrix–matrix product T · S
• generators: ∇(TS) = T∇(S) +∇(T )S

• diagonal: recover and multiply

Inverse T−1 (and product T−1 · S)

• generators: ∇(T−1) = −T−1∇(T )T−1

• diagonal: ??

No obvious algorithm to get diag(T−1)



How to get diag(T−1)?

Entries of U−1: explicitly available
with the Extended Matrix version of
GKO
kth step: kth column of U−1

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ y1

∗ ∗ ∗ ∗ ∗ y2

∗ ∗ ∗ ∗ y3

u44 ∗ ∗ y4

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

v14 ∗ ∗ ∗
v24 ∗ ∗ ∗
v34 ∗ ∗ ∗
-1

-1
-1

Entries of L−1: repeat on TT : the LU factors of TT are UTLT

(up to diagonal scaling with the pivots)
kth step: kth row of L−T

We get the right entries at the right time to compute the diagonal:

1 2 3 4
2 3 4

3 4
4

1
2 2
3 3 3
4 4 4 4

U−1L−1 =



Implementing GKO+invdiag

Not exactly GKO twice: many computations are the same

Schur compl(TT ) = [Schur compl(T )]T

• GKO is born symmetric: given generators of T , compute
generators of Schur compl(T ) — 4rn2 ops

• EM version: some extra work on G — 6rn2 ops

• Now we restore symmetry by doing the same on B — 8rn2 ops

In (12r + 3)n2 ops we can build a full set of generators for T−1:

• Solve G ′ = T−1G

• Solve B ′ = T−TB

• Compute diag(T−1) with the above algorithm



Some numerical results
GKO+invdiag vs. a simpler strategy: choose v ,

T−1v = diag(T−1)v +
[
T−1 − diag(T−1)

]
v

• T−1v computed with GKO

• [
T−1 − diag(T−1)

]
v computed easily from the generators

• solve for diag(T−1)v

This strategy loses accuracy because of cancellation errors:

n GKO+invdiag solve for diag(T−1)v

10 4.4E-16 5.8E-15
100 2.6E-14 1.4E-11
500 1.4E-12 3.9E-10

10 4.2E-15 1.2E-08
50 9.0E-08 1.6E-02

(random-generated Trummer-like M-matrices, diag+rank-1
matrices)



To sum up

• New O(n)-storage GKO version (Back-and-forth)
Competitive with EM, some nice +’s

• GKO+invdiag to get diag(T−1) for a Trummer-like T
Allows fast Trummer-like matrix computations

Also works when diag(T ) is reconstructible but ill-conditioned

Thank you for your attention
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