Some implementation issues on the GKO
algorithm

Federico Polonil:2

From discussions with: A. Arico, D. Bini, V. Olshevsky

IDipartimento di Matematica
Universita di Pisa

2Scuola Normale Superiore, Pisa

Cortona, 17 September 2008

Introduction

Our problem Solution of a matrix equation (NARE) with
Cauchy-like matrices

(but | am not talking about this)

e Matrix iterations working on Cauchy-like matrices
e Led us to investigate on the existing algorithms — GKO

e Some (small) results that could be interesting also outside our
problem

Cauchy-like matrices

Definition
C is Cauchy-like if there are Dy = diag(x), D(y) = diag(y) such

that
DiC—-CD,=G-B=0-= (rank r < n)

If x; # y;, then Cj; can be recovered from the generators:
j =)

Xi—Yi
If this is not always possible, C is partially reconstructible

Notable example: (r = 2) from Toeplitz matrices, after a Fourier
change of base

GKO: the idea

GKO algorithm [Gohberg—Kailath—Olshevsky, '95]

Theorem
The Schur complement of a Cauchy-like matrix is Cauchy-like.
Its generators are a rank-1 update of G(2:n,:) and B(:,2:n).

Gaussian elimination working on G and B only, reconstructing
elements when needed

GKO step by step

e reconstruct first column of L and use it to solve Ly = b
incrementally

* ¥ X X X ¥
* ¥ X X X ¥
* KX X X X X
* ¥ X X X ¥
* ¥ X X X ¥
* KX X X X X

e reconstruct first row of U and store it

e update the generators G and B

u]
o)
I
i
it

GKO step by step

e reconstruct first column of L and use it to solve Ly = b
incrementally

k) ok
Xk
x 3k
k) ok
Xk

* % K X ¥
* % ¥ X ¥
R R S

e reconstruct first row of U and store it

e update the generators G and B

u]
o)
I
i
it

GKO step by step

11U U1 314U 5UL

i
* % ¥ X
* % ¥ %

* % ¥ %
* % ¥ X

reconstruct first column of L and use it to solve Ly = b
incrementally

reconstruct first row of U and store it

update the generators G and B

u]
o)
I
i
it

GKO step by step

* ok U11U12U13U 14U 15U hn
* ok U29U23U24U25U2 Y2

* ok
* ok

e reconstruct first column of L and use it to solve Ly = b
incrementally

* ok %
* k%
* k%

e reconstruct first row of U and store it

e update the generators G and B

* % ¥

GKO step by step

U11U12U13U14U15UL 1
U29U23U24U25U2 Y2

* ok ok U333 U35U3 Ys
ko ok ok
*

reconstruct first column of L and use it to solve Ly = b
incrementally

* % ¥

reconstruct first row of U and store it

update the generators G and B

* ¥ *x X

GKO step by step

* ok ok %
* ok ok %

reconstruct first column of L and use it to solve Ly = b
incrementally

* ¥ *x X

reconstruct first row of U and store it

update the generators G and B

GKO step by step

* ok U11U12U13U14U15U1 Y1
* % U22U23U24U25U2 Y2
* % % ok ok % ok Y3
* ok % ok ok ok %k I Ya
* ok Ys

e reconstruct first column of L and use it to solve Ly = b
incrementally

e reconstruct first row of U and store it

e update the generators G and B

and finally. ..

GKO step by step

* X X X X ¥
* ¥ X X X ¥

e reconstruct first column of L and use it to solve Ly = b

incrementally

U111 2U13U14U15U16
UggU23U24U25U26
U33U34U35U36
UgqU45U 46

UssUs56

Uge

e reconstruct first row of U and store it

e update the generators G and B

and finally. ..
e solve Ux = y by back-substitution

hn
Y2
Ys
Ya
Ys

Yo

GKO step by step

* % U111 2U13U14U15U16
* ok U2U23U24U25U26
* % * ok ok %k U33U34U35U36
* ok * ok k% UgqUbyg5U46
* ok UssUs56
- Ugg

hn
Y2
Ys
Ya
Ys

Problem We need to store U
e Why O(n?) temporaries for O(n) input and output size?
e The maximum size that fits in memory is reduced

e Slower memory access (cache misses matter)

Yo

A solution: the extended matrix

Idea: first in [Kailath—Chun, '94], fully exploited by [Rodriguez, '06]
Matlab code [Arico-Rodriguez]

x = C1b is the Schur complement of the first block in

C b
-1 0
(b may be either n x 1 or n x s, multiple right-hand side)

e n steps of GKO on the extended matrix

e mixed Gaussian elimination: 1st column=GKO,
2nd column=traditional

e —/ is partially reconstructible Cauchy-like wrt diag(y), diag(y)

e you need not store the matrix U

Extended matrix GKO step by step

* ko ok ok kX
* ko okok ok X
* ko ok ok ok X
* ko ok ok kX
* ko ok ok ok X
* ko ok ok ok X

2a¢

Extended matrix GKO step by step

2a¢

Extended matrix GKO step by step

Extended matrix GKO step by step

Xk
Xk

Extended matrix GKO step by step

* % ok ok % x|

2a¢

* ¥ X X

* ¥ X X

Extended matrix GKO step by step

* % *x
* ¥ X X

* ¥ ¥ X X

* ¥ ¥ X X

Extended matrix GKO step by step

* ok ok ok ok
* ok ok ok ok

Extended matrix GKO step by step

* ok ok ok ok k(Y1
* % ok % x|Ys
* % ok k(Y3

* ko k(Y4

* % |Ys

* |Ye

* ko ok ok ok X

* ko ok ok ok X

EOE S S S

EOE S S S

Extended matrix GKO

Notice:
e In the —/ block, we divide by y; — y; (with j > /):
y must be injective (true in most applications)
e The —/ block diagonal is not reconstructible
Luckily whenever we need an element, it is —1

Cost: 6rn? instead of 4rn? flops of original GKO
(+2n?s for back-substitutions with a n x s right-hand side)

but only 2n buffer space is needed
In practice, faster for large values of n

Another solution: the back-and-forth method

* % U111 2U13U14U15U16
0 U2aU23U24U25U26
i- 0 0 U3sU34U35U36

* ok 000 *x x =

00 0 * * *

00 0 * * *

Y1
Y2
Y3

At each GKO step, we discard the top row of G and column of B:

G(k,:), B(:, k)

In practice, they stay in memory (no unnecessary allocations!)

Idea: can we use these to undo one GKO step?

Another solution: the back-and-forth method
* ok U1it12u13u1Uu1sU1g Y1
* ok (0 UggUosUoqUostizd (Y2

* ok 0 0 UsgusqussUsg Y3
* ok 00 0 x % x

000 % *
000 * =

*
*

G(k,:)B(:,k)
Xk—Yk
e So can the rest of the u-row, using the value of B after step k:
G(k7 :)Bbefore(:> f) _ G(k, :)Bafter(:ag)
Xk — Ve Yk — Ye

e uy (pivot) can be recovered: uy, =
p

Uke =

e Using u-row and Bg,fer, We can undo the update to get Bpefore

Back-and-forth GKO step by step

* X X X X ¥
* KX X X X ¥
* KX X X X X
* X X X X ¥
* KX X X X ¥
* KX X X X X

e GKO as usual
e Keep in memory the old parts of G and B
® Do not keep the old uj;'s

u]
o)
I
i
it

Back-and-forth GKO step by step

Xk
Xk
Xk
Xk
Xk

* % X X X
* % X X X

S S I S

e GKO as usual
e Keep in memory the old parts of G and B

® Do not keep the old uj;'s

Back-and-forth GKO step by step

U11U12U13U14U1 U

%
*

*
*
*
*

R S
B S
* % X X

e GKO as usual
e Keep in memory the old parts of G and B

® Do not keep the old uj;'s

Xk
EE

e GKO as usual

e Keep in memory the old parts of G and B

Back-and-forth GKO step by step

U11U12U13U14U15U1
U2gU23U24U25U2
* ok
* ok ok
* ok ok

e Do not keep the old ujj's

Back-and-forth GKO step by step

L

EE

L * kX
L

e GKO as usual

U11U12U13U14U15U16
UaUo3U24U25U2
U33U34U35U34

*

*

e Keep in memory the old parts of G and B

e Do not keep the old ujj's

Back-and-forth GKO step by step

* ok U11U12U13U14U15U T
* Ok Ul 23U24U25U2
* % * * %
* % * %

e GKO as usual
e Keep in memory the old parts of G and B
e Do not keep the old ujj's

* X ¥ X *x

Back-and-forth GKO step by step

* X ¥ X *x
*
*
*

GKO as usual

U11U12U13U14U15U

Keep in memory the old parts of G and B

Do not keep the old uj;'s

Back-and-forth GKO step by step

U11U19U13U4U15U

¥ ¥ X ¥ %
¥ ¥ X ¥ %
*
*
* ¥
<
8
<
B
<
2
w

For k = n to 1:
e Reconstruct the kth row of u

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO step by step

k* ko ok ok
k* ok ok ok

For k = n to 1:
e Reconstruct the kth row of u

U11U12U13U14U15U
U2oUa3U24U25U2

* ¥ X %
* ¥ X X

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO step by step

* %k U11U12U13U14U 15U
* ok Uz3U23U24U25U2
E S S ko ok ok U33U34U35U3
o |-
* ok *
¥ ok ok
For k =nto 1:

e Reconstruct the kth row of u

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO step by step

U11U19U13U14U15U16

* ok U2gU23U24U25U 26

[+ Ussla stz

* ok * ok ¥ ok ok ok

* ok ¥ ok ok ok

* ok ¥ ok ok %
For k =nto 1:

e Reconstruct the kth row of u

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO step by step

U1 1U1 213U 415U

*
*

* % X X
B S
o S
* % X X

*
*
*
*

* % X X
* % X X

For k = n to 1:
e Reconstruct the kth row of u

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO step by step

For k = n to 1:
e Reconstruct the kth row of u

* % X X X
* % X X X

* %
* %
* %
* %
* %

* ¥ X X X
* % X X X
* % X X X
* ¥ X X X

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO step by step

* % U11U19U13U14U15U16
* % * ok ok ok k%
% % ¥ k% % % %k %
%k ¥ ok ok ok k%
% % ¥ k% % % k%

For k = n to 1:
e Reconstruct the kth row of u

e Use it to solve the kth equation of Ux = y by
back-substitution

e “downdate” B to its old value at step k of GKO

Back-and-forth GKO: considerations

e “downdate” of G is not needed

e cost: 6rn’: same as Extended Matrix

e memory: input size + 2n temps: same as Extended Matrix
e both require y; # y; for i # j

e similar numerical behaviour

Are they the same algorithm? No:

Key questions: where is L in Extended Matrix? Where is U?

Extended Matrix — where are L and U?

* X %
* % %

L: upper part as in GKO

ko ok
*

* % *x

*
*
*
*
*

* (Y1
* Y2
* Y3

* Rk K| X X X X X X

* X XX ¥ %

EM vs. BF: numerical experiments

Forward errors

n EM BF n EM BF
10 | 1.6E-12 1.6E-12 10 | 7.9E-11 6.9E-11
100 | 1.4E-05 1.4E-05 100 | 2.0E-07 1.0E-07
500 | 8.0E-01 8.0E-01 500 | 1.3E-07 1.2E-07

ill-conditioned Cauchy-like Gaussian Toeplitz
nodes=1+ 0.3(7 — j) a=09

Caveat: not to be taken too seriously:

e Implementation matters, small optimizations = huge
differences

e Processor, cache size, cache efficiency issues

EM vs. BF: numerical experiments

CPU time
n ‘ EM BF plain
100 1.3E-03 1.2E-03 8.5E-04
1000 1.1E-01 9.7E-02 8.6E-02
3000 | 1.03E4+00 8.6E-01 1.7E+00
10000 | 1.3E401 1.0E+01 3.5E401

Caveat: not to be taken too seriously:
e Implementation matters, small optimizations = huge
differences
e Processor, cache size, cache efficiency issues

EM vs. BF: other factors

e BF: a posteriori error estimate: did we reconstruct the original
generators properly?
LU stability 4+ generator growth

e BF: preview of the solution: after part 1, the entries of x
arrive one at each step.
In Toeplitz computations, lower-sampled “preview”

e BF: the inner steps take less memory (vs. EM: every step
takes 2nr memory)
Should fit better into cache

Trummer-like matrices: definitions

Definition
A Trummer-like matrix is a Cauchy-like matrix in which the
non-reconstructible entries are the diagonal ones, i.e.

D,T—TD,=G-B=[0.-= (rank r < n)

Appear in many contests:
e Trummer's problem [Gerasoulis et al., 88]
e Toeplitz computations, e.g. [Kailath-Olshevsky '97]
e Integral equations, e.g. the matrix equation we were solving

Displacement rank and algorithms

How to store them?
e Store generators G, B as every Cauchy-like matrix, and
e Store the diagonal separately
Structure is preserved
If TRk(T) :=Rk(DxT — TDy)
e TRk(T +S) =TRk(T) + TRk(S)
e TRk(TS) = TRk(T) + TRk(S)
e TRK(T™1) =TRk(T)

Our goal: space-efficient fast Trummer-like matrix computations:
T-v, T-§, T t.v, T7L.S

Matrix-vector operations

Matrix—vector product: easy! Recover T from its generators one
row at a time, apply traditional M-v algorithm

Linear system solving T v idea in [Kailath—Olshevsky, '97]:
Traditional GKO + store and update diagonal elements separately

* ok U11U12U13U14U15U1 Y1
* % U29U23U24U25U2 Y2

* ok
* ok

Matrix—matrix operations

Let VT := DT — TDx

Matrix—-matrix product T - S
e generators: V(TS) = TV(S)+ V(T)S
e diagonal: recover and multiply

Inverse 71 (and product T~1-5)
e generators: V(T 1) = -T-1v(T)T1
e diagonal: 77

No obvious algorithm to get diag(7~1)

How to get diag(T1)?

* % *
* % *
*

* ¥

Entries of U~!: explicitly available

with the Extended Matrix version of ——
CKO

kth step: kth column of U~! l

Entries of L=1: repeat on TT: the LU factors of T7 are UTLT
(up to diagonal scaling with the pivots)

kth step: kth row of L= T

We get the right entries at the right time to compute the diagonal:

UflLfl —

=W N

= W DN
= W
W

Implementing GKO+invdiag

Not exactly GKO twice: many computations are the same
Schur_compl(T) = [Schur_compl(T)]"

e GKO is born symmetric: given generators of T, compute
generators of Schur_compl(T) — 4rn? ops

e EM version: some extra work on G — 6rn® ops

e Now we restore symmetry by doing the same on B — 8rn? ops
In (12r 4 3)n? ops we can build a full set of generators for T~ 1:

e Solve G' = T71G

e Sove B'=T""B

e Compute diag(T 1) with the above algorithm

Some numerical results
GKO+invdiag vs. a simpler strategy: choose v,

T 'v =diag(T ")v+ [T —diag(T)] v

e T~ v computed with GKO
o [T~! —diag(T!)] v computed easily from the generators
e solve for diag(T 1)v

This strategy loses accuracy because of cancellation errors:

n | GKO+invdiag solve for diag(T1)v
10 4.4E-16 5.8E-15
100 2.6E-14 1.4E-11
500 1.4E-12 3.9E-10
10 4.2E-15 1.2E-08
50 9.0E-08 1.6E-02

(random-generated Trummer-like M-matrices, diag+rank-1
matrices)

To sum up

e New O(n)-storage GKO version (Back-and-forth)
Competitive with EM, some nice +'s

e GKO+invdiag to get diag(T 1) for a Trummer-like T
Allows fast Trummer-like matrix computations

Also works when diag(T) is reconstructible but ill-conditioned

To sum up

e New O(n)-storage GKO version (Back-and-forth)
Competitive with EM, some nice +'s

e GKO+invdiag to get diag(T 1) for a Trummer-like T
Allows fast Trummer-like matrix computations

Also works when diag(T) is reconstructible but ill-conditioned

Thank you for your attention

