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The Kemeny constant
A ∈ Rn×n adjacency matrix of an undirected, connected, weighted
network; P = D−1A ∈ Rn×n

≥0 transition matrix of the random walk on it
(discrete-time Markov chain). eig(P) = {λ1 = 1, λ2, . . . , λn}.

Kemeny constant [Kemeny,Snell ’60]

K (P) =
n∑

i=2

1
1 − λi

.

Probabilistic definition: the mean first passage time from a fixed state i to
a state j drawn according the invariant distribution.

Car-based interpretation: Car 1 runs for a long time on a road network and
then breaks down. How many steps does car 2 take (on average) to get to
the same spot as A with a random walk?

K (P) small ⇐⇒ A well-connected as a network.
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Centralities
We study a centrality measure for roads (edges) based on the Kemeny
constant: a road is important if its removal causes a large increase in
K (P):

c(e) = K (P̂) − K (P).

Many other centrality measures are available in literature. [Estrada, book ’13]

Main inspirations for us:
[Estrada, D.Higham, Hatano ’09]: communicability betweenness centrality:
variation in communicability centrality caused by the removal of an
edge.
[Crisostomi, Kirkland, Shorten ’11]: Kemeny constant variation in a
Markov chain model of road circulation. Main difference: we do not
want to rely on external traffic data, just on the map.
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Application

Collaboration with our civil engineering department; research question: is
industry location driven by well-connected outskirts?

Large scale maps, e.g., continental Tuscany: 1.56M edges; no traffic data.
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Weak ties
Goal: highlight weak ties [Granovetter, ’73], i.e., crucial edges that separate
(strongly-connected) sections of the map. Example: bridges.

Kemeny-based centrality r=1e-8, filtered
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Challenges
Deal with negative centralities;
Deal with cut-edges;
Make it fast enough for 1.5M road elements.
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Negative centralities

Sometimes, the Kemeny constant decreases when removing an edge!

Example K (left) ≈ 2.54, K (right) = 2.5.
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Not ideal: intuition of “connectedness” says more roads are always better.

This phenomenon is known as Braess paradox [Braess ’68, Kirkland, Zeng ’16].
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Analysis

Kemeny constant

K (P) =
n∑

i=2

1
1 − λi

.

{λ1 = 1, . . . , λn} = eig(D−1A) = eig(D−1/2AD−1/2)︸ ︷︷ ︸
:=W , symmetrized
adjacency matrix

The edge removal changes W in a non-trivial way.
0 1/2 6−1/2 0

1/2 0 6−1/2 1
6−1/2 6−1/2 0 3−1/2

0 0 3−1/2 0

 →


0 0 3−1/2 0
0 0 3−1/2 0

3−1/2 3−1/2 0 3−1/2

0 0 3−1/2 0
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Solution

Idea Replace the removed edge with two loop edges,
[
0 1
1 0

]
→

[
1 0
0 1

]
This changes the model in an easier-to-predict way:

0 1/2 6−1/2 0
1/2 0 6−1/2 1

6−1/2 6−1/2 0 3−1/2

0 0 3−1/2 0

 →


1/2 0 6−1/2 0
0 1/2 6−1/2 1

6−1/2 6−1/2 0 3−1/2

0 0 3−1/2 0


W 7→ Ŵ := W + 1√

di dj
(ei − ej)(ei − ej)T .

Theorem
With this definition, c(e) = k(P̂) − k(P) ≥ 0 after each edge removal.

Proof Standard eigenvalue inequalities for symmetric matrices:
Ŵ ⪰ W =⇒ λ̂i ≥ λi =⇒

∑ 1
1−λ̂i

≥ 1
1−λi

.
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Cut-edges
(Color scheme: blue edge = higher = important.)
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Problem If the removed edge is a cut-edge, Ĝ is disconnected, λ̂2 = 1, and
K (P̂) = +∞.
On a road network, cut-edges are often unimportant dead ends, but
sometimes they are crucial for connectivity and cannot be
ignored/dismissed.
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Solution
First idea Change the definition to

Kr (P) =
n∑

i=2

1
1 + r − λi

.

for a small regularization factor r > 0, e.g., r = 10−6.

↔ replacing the Laplacian L = D − A with (1 + r)D − A.

Problem Centrality scores cr (e) = Kr (P̂) − Kr (P) of cut-edges become
≈ 1

r , artificially high.
Solution

Filtered Kemeny-based centrality

c̃r (e) =
{1

r − cr (e) e is a cut-edge,
cr (e) otherwise.
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Unfiltered vs. filtered
Unfiltered
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Sign reversal
Why 1

r − cr (e) and not the more natural cr (e) − 1
r ?

Theorem
If e is a cut-edge, 1

r − cr (e) ≥ 0.

Proof Interlacing inequalities: since Ŵ − W ⪰ 0 is rank-1 positive
semidefinite,

1
r = λ̂2 ≥ λ2 ≥ λ̂3 ≥ λ3 ≥ · · · ≥ λ̂n ≥ λn.

Hence

1
r − cr (e) = 1

1+r−λ2
− 1

1+r−λ̂3︸ ︷︷ ︸
≥0

+ 1
1+r−λ3

− 1
1+r−λ̂4︸ ︷︷ ︸

≥0

+ · · · + 1
1+r−λn︸ ︷︷ ︸

≥0

.
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Open problem

Filtered Kemeny-based centrality

c̃r (e) =
{1

r − cr (e) e is a cut-edge,
cr (e) otherwise.

Empirical observation
With this definition, centrality scores of cut-edges have centrality scores
comparable with non-cut-edges, and they are sorted correctly in order of
importance.

We still do not have a good explanation for this observation!
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Getting it done
Problem How to reduce the O(n4) cost and make it fast enough for large
graphs?

Theorem [Kemeny ’81, Kirkland ’10, Wang-Dubbeldam-Van Mieghem ’17]

Let w ∈ Rn be any vector such that wT 1 = 1. Then,

K (P) = Trace(S−1) − 1, S = I − P + 1wT .

Since P̂ − P and Ŝ − S is a rank-1 update, we can use the

Sherman–Morrison formula

(S + uvT )−1 − S−1 = −1
1 + vT S−1uS−1uvT S−1

c(e) = K (P̂)−K (P) = Trace
( −1

1 + vT S−1uS−1uvT S−1
)

= −uT S−2v
1 + vT S−1u .
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Final formula
Some more routine manipulations:

Introduce regularization parameter r ;
Use again Sherman–Morrison to invert Sr = (1 + r)I − P + 1wT

Express it in terms of “regularized Laplacian” Lr = (1 + r)D − A;
Choose w to make the problem symmetric

Final formula

c({i , j}) = AijdT (x.2)
1 − Aij(xi − xj)

, y = L−1
r (ei − ej), x = y − dT y

γ
z.

where d = diag(D), z = L−1
r d, γ = dT z + dT 1.
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Practical cost

Final formula

c({i , j}) = AijdT (x.2)
1 − Aij(xi − xj)

, y = L−1
r (ei − ej), x = y − dT y

γ
z.

where d = diag(D), z = L−1
r d, γ = dT z + dT 1.

1 Precompute Cholesky factorization of Lr = (1 + r)D − A, and d, z, γ.
2 To compute c(e) for each edge (possibly in parallel), solve one linear

system with Lr (using the precomputed factorization) and O(n) extra
operations.

On road networks, often n ≈ m ≈ nnz(chol(Lr )), so all these operations
are somewhat cheap — but the cost is still O(n2) to compute all
centralities.
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Experiment: a large-scale network
Mainland Tuscany map: n = 1.22M, m = 1.56M, nnz(chol(Lr )) = 3.36M.

1 Precomputation and chol : < 1s.
2 parfor centrality computation: 18 hours.

On a machine with 12 3.4GHz Xeon physical cores.
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Experiment: the bridges of Pisa
Kemeny-based centrality r=1e-8, filtered
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Kemeny-based centrality r=1e-8, filtered
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Conclusions
The Kemeny constant variation works well to highlight bottlenecks
and weak ties.
Connectivity/positivity issues can be solved.
Computationally feasible even in large scale.
Interesting results for our collaborators in civ-eng.

Altafini, Bini, Cutini, Meini, Poloni. An edge centrality measure based on
the Kemeny constant. Arxiv:2203.06459.

Thanks for your attention!
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