A new algorithm for time-dependent first-return probabilities of a fluid queue

Federico Poloni Joint work with N. Bean, G. T. Nguyen

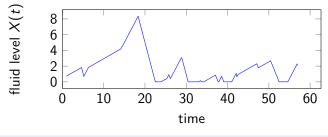
University of Pisa

Matrix Analytic Methods in Stochastic Models (MAM) 10, 2019, Hobart, Australia

Setup

Fluid queue: "infinite-size bucket" in which fluid level changes at a rate $c_{\varphi(t)}$ which depends on the state $\varphi(t)$ of a CTMC with generator matrix Q.

Arbitrary rates c_i ; no zero rates for simplicity (in this talk); $S = S_+ \cup S_-$.



au = time of first return to starting level.

$$\Psi(t)_{ij} = P[\tau < t, \varphi(t) = j \in S_- \mid \varphi(0) = i \in S_+].$$

Algorithms for $\Psi(t)$

Laplace-Stieltjes transform [Ahn, Ramaswami '04] [Bean, O'Reilly, Taylor '08] [Abate, Whitt '95, '06, ...]

- Needs complex arithmetic.
- Known to 'lose' significant digits.

Triangular arrays [Sericola, '98], [Barbot, Sericola, Telek '01] (variant)

- Full transient analysis without complex transforms.
- Almost cancellation-free; nonnegative matrices, but no probabilistic interpretation (as far as I know).
- Expensive: need to fill certain 'triangular arrays' of $|S| \times |S_-|$ matrices, one for each negative rate.

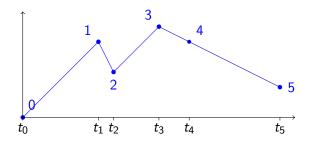
New algorithm in this talk

- No complex transforms
- Nonnegative matrices, cancellation-free: ensures forward stability.
- Comes with probabilistic interpretation (lowest-trough).

Uniformization

Uniformization: replace the CTMC with:

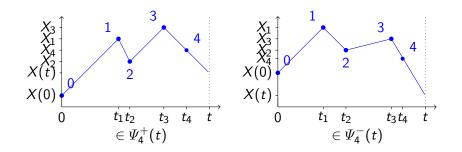
- State transitions according to DTMC with $P = I + \frac{1}{\lambda}Q$.
- Events with independent time increments $t_{k+1} t_k \sim \text{Exp}(\lambda)$.



The matrices Ψ_n^+ and Ψ_n^-

Definition

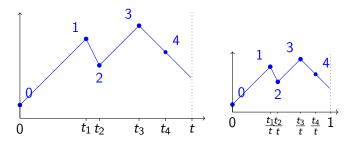
$$\begin{split} [\Psi_n^+(t)]_{ij} &= P[X(0) < X(t) < \text{all } X(t_k), \, \varphi(t) = j \in S_- \mid \\ \varphi(0) &= i \in S_+, \, n \text{ events in } (0, t)] \\ [\Psi_n^-(t)]_{ij} &= P[X(t) < X(0) < \text{all } X(t_k), \, \varphi(t) = j \in S_- \mid \\ \varphi(0) &= i \in S_+, \, n \text{ events in } (0, t)] \end{split}$$



Time rescaling

Lemma

 $\Psi_n^{\pm}(t)$ are the same for each t.



Proof Prob. density of observing events at $\hat{t}_1, \hat{t}_2, \ldots, \hat{t}_n$, conditioned on n events in (0, t) = prob. density of observing events at $\frac{\hat{t}_1}{t}, \ldots, \frac{\hat{t}_n}{t}$, conditioned on n events in (0, 1). Paths with these events (and the same states) are equal up to rescaling.

Meaning of Ψ_n^-

 $\Psi_n^-(t) = P[\tau \in (t_n, t)].$

Hence

$$\begin{split} \Psi(t) &= P[\tau < t] \\ &= \sum_{n=0}^{\infty} P[n \text{ evts in } (0,t)] P[\tau \in (t_1,t_2), (t_2,t_3), \dots, (t_{n-1},t_n) \text{ or } (t_n,t)] \\ &= \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} (\Psi_1^- + \Psi_2^- + \dots + \Psi_n^-). \end{split}$$

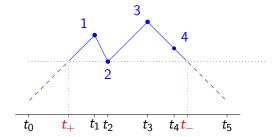
Remark The triangular arrays method also computes $\Psi_1^- + \Psi_2^- + \cdots + \Psi_n^-$ and this sum.

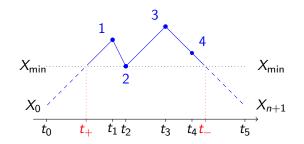
Proportion of paths in Ψ_n^+ vs. Ψ_n^-

Lemma

Let
$$\Psi_n = \Psi_n^+ + \Psi_n^-$$
. Then, $[\Psi_n^+]_{ij} = \frac{c_i}{c_i + |c_i|} [\Psi_n]_{ij}$, $[\Psi_n^-]_{ij} = \frac{|c_j|}{c_i + |c_j|} [\Psi_n]_{ij}$

Proof Assume final time $t = t_{n+1}$. Assume we have a path counted in either $[\Psi_n^+]_{ij}$ or $[\Psi_n^-]_{ij}$, but we don't know which one; fix everything apart from lengths of first and last time increments:

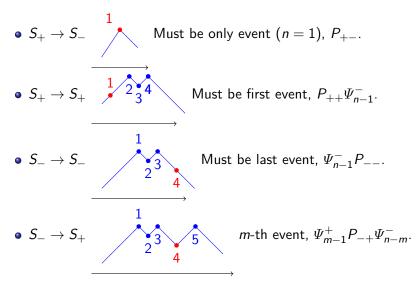




- $t_1 t_0 \sim \mathsf{Exp}(\lambda)$
- $t_+ t_0 \sim \mathsf{Exp}(\lambda)$ (memoryless property).
- Similarly, $t_{n+1} t_{-} \sim \text{Exp}(\lambda)$.
- Now, let's focus on vertical lengths: $X_{\min} X_0 \sim \text{Exp}(\frac{\lambda}{c_i})$, $X_{\min} - X_{n+1} \sim \text{Exp}(\frac{\lambda}{|c_j|})$.
- $P[\text{path in } \Psi_n^+] = P[X_{\min} X_0 \text{ longer than } X_{\min} X_{n+1}] = \frac{\hat{\frac{1}{|c_i|}}}{\frac{\lambda}{c_i} + \frac{\lambda}{|c_j|}} = \frac{c_i}{c_i + |c_i|}$ (Poisson race).

Lowest-trough recursion for Ψ_n

Condition on the type and position on the lowest event.



The recursion

$$\Psi_{1} = P_{+-},$$

$$\Psi_{n} = P_{++}\Psi_{n-1}^{-} + \sum_{m=2}^{n-1}\Psi_{m-1}^{+}P_{-+}\Psi_{n-m}^{-} + \Psi_{n-1}^{+}P_{--}.$$

With $[\Psi_n^+]_{ij} = \frac{c_i}{c_i+|c_j|} [\Psi_n]_{ij}$, $[\Psi_n^-]_{ij} = \frac{|c_j|}{c_i+|c_j|} [\Psi_n]_{ij}$, this allows one to compute all Ψ_n^{\pm} .

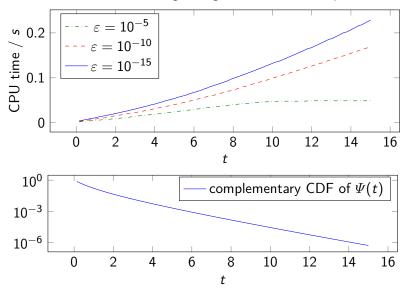
Algorithm

Compute enough terms of this recursion.

2 Truncate sum
$$\Psi(t) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} (\Psi_1^- + \Psi_2^- + \cdots + \Psi_n^-).$$

Computational aspects

The bad: need more terms as t gets higher: slower to compute 'tails'.



Computational aspects

The good: speed Faster than triangular arrays. With the same Ψ_n^{\pm} , one can compute multiple points with negligible overhead.

Algorithm	t = 0.1	t = 1.1	t = 9.9	t = 15	100 t in [0, 15]
Laplace-Stiltjes	0.06 s	0.09 s	0.07 s	0.12 s	5.49 s
Triangular arrays	0.17 s	0.39 s	3.54 s	6.11 s	6.11 s
This algorithm	0.08 s	0.09 s	0.26 s	0.64 s	0.64 s

The good: accuracy Relative errors are much smaller than with Laplace-Stiltjes transforms; reaches full machine precision.

Algorithm	t = 0.1	t = 1.1	t = 9.9
Laplace-Stiltjes	$6.1 imes10^{-11}$	$4.2 imes 10^{-11}$	$4.1 imes 10^{-11}$
Triangular arrays	$6.6 imes10^{-16}$	$5.9 imes10^{-16}$	$1.2 imes 10^{-15}$
This algorithm (trunc. above)	$6.5 imes10^{-16}$	$1.9 imes10^{-16}$	$3.8 imes10^{-16}$
This algorithm (trunc. below)	$2.8 imes \mathbf{10^{-16}}$	$2.4 imes10^{-16}$	$8.4 imes10^{-16}$

The generating function Riccati equation

The recursion

$$\Psi_{1} = P_{+-},$$

$$\Psi_{n} = P_{++}\Psi_{n-1}^{-} + \sum_{m=2}^{n-1}\Psi_{m-1}^{+}P_{-+}\Psi_{n-m}^{-} + \Psi_{n-1}^{+}P_{--}.$$

With $[\Psi_n^+]_{ij} = \frac{c_i}{c_i+|c_j|} [\Psi_n]_{ij}$, $[\Psi_n^-]_{ij} = \frac{|c_j|}{c_i+|c_j|} [\Psi_n]_{ij}$, this allows one to compute all Ψ_n^{\pm} .

Nice fact: the generating function $\widehat{\Psi}(z) = \sum_{i=1}^{\infty} \Psi_n^- z^n$ satisfies

$$C_{+}^{-1}(P_{++}-z^{-1}I)\widehat{\Psi}(z) + \widehat{\Psi}(z)|C_{-}^{-1}|(P_{--}-z^{-1}I) \\ + \widehat{\Psi}(z)|C_{-}^{-1}|P_{-+}\widehat{\Psi}(z) + C_{+}^{-1}P_{+-} = 0$$

which is a close relative of the Riccati equation solved in the Laplace-Stiltjes method.

F. Poloni (U Pisa)

Conclusions

What we did

- New lowest-trough algorithm to compute $\Psi(t)$ directly, without complex transforms.
- More accurate, and faster if one needs more than pprox 5 points.
- Full probabilistic interpretation.

What we still don't know

- Quantitative convergence / complexity bounds on the tails?
- Other algorithms than lowest-trough? Not clear; tricky to put each sample path in the correct 'bin' Ψ_n^- .
- Fast convolution algorithms to speed up the sums? Or are these the same complex transforms that we wanted to avoid?

Conclusions

What we did

- New lowest-trough algorithm to compute $\Psi(t)$ directly, without complex transforms.
- More accurate, and faster if one needs more than pprox 5 points.
- Full probabilistic interpretation.

What we still don't know

- Quantitative convergence / complexity bounds on the tails?
- Other algorithms than lowest-trough? Not clear; tricky to put each sample path in the correct 'bin' Ψ_n^- .
- Fast convolution algorithms to speed up the sums? Or are these the same complex transforms that we wanted to avoid?

Thanks for your attention!