Algorithms for nonnegative quadratic vector equations

D. A. Bini ${ }^{1} \quad$ B. Meini ${ }^{1} \quad$ Federico Poloni ${ }^{2,3}$

${ }^{1}$ University of Pisa
${ }^{2}$ Scuola Normale Superiore, Pisa until end 2010
${ }^{3}$ Technische Universität Berlin (A. Von Humboldt postdoctoral fellow) now

$18^{\text {th }}$ Householder Symposium
Tahoe City, CA 2011

Markovian binary trees

MBTs model a colony of individuals that reproduce and die.
[Bean, Kontoleon, Taylor '04] [Hautphenne, Latouche, Remiche '08]
Simple example
$a=\mathbb{P}[$ dies without spawning $]$
$b=\mathbb{P}$ spawns into two independent copies $]$
Question: starting from one individual, what is \mathbb{P} [extinction]?

A simple example

Simple example

$a=\mathbb{P}[$ dies without spawning $]$ $b=\mathbb{P}$ spawns into two independent copies $]$
Question: starting from one individual, what is \mathbb{P} [extinction]?
It is a nice elementary problem: $x=\mathbb{P}$ [extinction]

- Either dies outright

The minimal solution

$x=a+b x^{2}$ has two nonnegative solutions. One is always 1 , for $a+b=1$ (*) either reproduces or dies without)

Easy to prove that \mathbb{P} [extinction] is the smaller solution. Three cases:
Subcritical $\mathbb{P}[$ extinction $]=1>x_{2}$ (i.e. extinction $=$ always)
Supercritical $\mathbb{P}[$ extinction $]=x_{2}<1$
Critical limit case: 1 double solution
$\mathbb{P}[$ extinction $]=1$, but needs an infinite time on average

The vector case

Each can be in N different states (e.g. age ranges)

$$
\begin{array}{lrl}
a & \in \mathbb{R}_{+}^{N} & a_{i} \\
b \in \mathbb{P}\left[\boldsymbol{R}_{i} \text { dies }\right] \\
b \times N \times N & b_{i j k} & =\mathbb{P}\left[\boldsymbol{k}_{i} \text { spawns into } \boldsymbol{k}_{j} \text { and }{ }_{k}\right]
\end{array}
$$

b contains N^{3} data!
Think to b as a vector-valued bilinear form

Our equation becomes
Markovian binary trees

$$
\begin{equation*}
x=a+b(x, x) \tag{MBT}
\end{equation*}
$$

The classical algorithms

Markovian binary trees

$$
\begin{equation*}
x=a+b(x, x) \tag{MBT}
\end{equation*}
$$

$e=\operatorname{ones}(N, 1)$ is always a solution
$\mathbb{P}[$ extinction $]=$ minimal nonnegative solution
Up to 2^{N} nonnegative sol'ns, but there is always a minimal one: \widehat{x} s.t. $\widehat{x} \leq x$ (component-by-component) for any other solution x

Subcritical or critical: e is minimal, nothing to do
Supercritical: some other $0 \leq \hat{x} \leq e$ is minimal: how to compute it?

The classical algorithms

Markovian binary trees

$$
x=a+b(x, x)
$$

Functional iterations [BKT '04]

$$
x_{k+1}=a+b\left(x_{k}, x_{k}\right)
$$

or something more elaborate, like

$$
\begin{gathered}
x_{k+1}=a+b\left(x_{k+1}, x_{k}\right) \\
\text { i.e. } \\
x_{k+1}=\left(I-b\left(\cdot, x_{k}\right)\right)^{-1} a
\end{gathered}
$$

$b\left(\cdot, x_{k}\right): \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}^{N}$: just a matrix

The classical algorithms

Markovian binary trees

$$
x=a+b(x, x)
$$

Functional iterations [BKT '04]
Newton method [HLR '08]

$$
x_{k+1}=\left(I-b\left(\cdot, x_{k}\right)-b\left(x_{k}, \cdot\right)\right)^{-1} a
$$

+ variants, e.g. [Hautphenne, Van Houdt '10]

The classical algorithms

Markovian binary trees

$$
\begin{equation*}
x=a+b(x, x) \tag{MBT}
\end{equation*}
$$

Functional iterations [BKT '04]
Newton method [HLR '08]

- When started from $x_{0}=0$, they converge monotonically:

$$
0=x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x^{*}
$$

- neat probabilistic interpretations:
$x_{k}=\mathbb{P}$ [extinction truncated to the k-th generation, or to a subtree]
- Become slower when close to critical: need more generations to capture the behaviour of the tree

Deflation

Close to a double solution, and for Newton double $=$ trouble But one of these solutions $x=e$ is known, we want to deflate it: Set $y:=e-x$ survival probability; (MBT) becomes
The optimistic equation

$$
y=\underbrace{(b(e-y, \cdot)+b(\cdot, e))}_{:=P_{y}} y=P_{y} y
$$

Functional it'ns/Newton in this form: nothing changes, but. . .

Perron vector-based algorithms

The optimistic equation

$$
y=\underbrace{(b(e-y, \cdot)+b(\cdot, e))}_{:=P_{y}} y=P_{y} y
$$

New way to see the same equation: y is the Perron vector of a matrix depending (linearly) on y itself

$$
\begin{equation*}
y=P V\left(P_{y}\right) \tag{PE}
\end{equation*}
$$

(+suitable normalization for the eig'vec: w^{T}. Residual $=0$ for some $\left.w\right)$

- Fixed point iteration based on (PE): $y_{k+1}=P V\left(P_{y_{k}}\right)$
- Newton's method

Numerical experiments

Figure: CPU time for a parameter-dependent problem [BKT '08, example 1]; lower=better

Numerical experiments

Figure: CPU time for a parameter-dependent problem [BKT '08, example 2]; lower=better

Convergence results

- Convergence is not monotonic
- Convergence is not guaranteed for very far-from-critical problems

Theorem [Meini, P., SIMAX 2011]

- Explicit formula for the Jacobian of the Perron iteration
- For a special normalization choice, if problem \rightarrow critical then $\rho(\mathrm{Jac}) \rightarrow 0$

Thus, locally convergent for close-to-critical with speed that tends to superlinear

Theorem [Bini, Meini, P., NLAA (to appear)]
When the algorithm converges, it converges to the right solution \widehat{x}

Applicability

We may ensure applicability even when strict positivity/irreducibility assumptions do not hold:
(1) deflate away entries i s.t. $\widehat{x}_{i}=0$: they can be determined in $O\left(N^{3}\right)$ from the nonzero pattern of a and b
(2) all P_{y} have the same nonzero pattern; if they are reducible, we may split the problem into two subproblems (as with linear equations; idea: if $P_{y}=\left[\begin{array}{cc}P_{11} & P_{12} \\ 0 & P_{22}\end{array}\right]$, we can solve for the second block alone and back-substitute)

A unifying framework

Why is this problem interesting?

$$
\begin{gathered}
M \mathrm{x}=\mathrm{a}+\mathrm{b}(\mathrm{x}, \mathrm{x}) \\
X C X-A X-X D+B=0 \\
P X^{2}+Q X+R=0 \\
\left\{\begin{array}{l}
l x=(P y) \cdot{ }^{*} x+e \\
l y=(Q x) \cdot{ }^{*} y+e
\end{array}\right.
\end{gathered}
$$

(Nonsym. Riccati) (QBD equation)
(Transport theory)

With a bit of $\operatorname{vec}(\cdot)$, several matrix equations can be reduced to (MBT) Although no known $(x=e)$ solution \rightarrow no PV-based algorithms

Open problem

Can we recover something similar from partial information (e.g., one known eigenpair of X)? Would carry over to many matrix equations

Common aspects

- minimal solution $x_{*} \geq 0$, i.e., $x_{*} \leq x$ for any other solution x
- functional iterations and Newton's method exhibit monotonic convergence: $0=x_{0} \leq x_{1} \leq x_{2} \leq \cdots \rightarrow x_{*}$
- close-to-critical problems: when close to a double solution, convergence is slower and more unstable

Common framework to work with several equations from different applications [P., to appear (LAA)]

Advantages:

- unified proofs: clear hypotheses, role of strict positivity of x_{*} no matrix structure or spectral properties needed
- unified algorithms: take an algorithm for one equation, apply it to the others
Example a Newton variant [Hautphenne, Van Houdt '10] useful for the transport theory eqn

Conclusions

Open questions

- Understand doubling methods (SDA/Cyclic Reduction) in this framework:

If we try to construct doubling for (MBT) we get Newton instead; are the two related?

- Shift technique + what happens to spectral properties?
- Perron-based algorithms without a "full" known solution $x=e$

Conclusions

Open questions

- Understand doubling methods (SDA/Cyclic Reduction) in this framework:

If we try to construct doubling for (MBT) we get Newton instead; are the two related?

- Shift technique + what happens to spectral properties?
- Perron-based algorithms without a "full" known solution $x=e$

Thanks for your attention!

