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Markovian binary trees

. . .
MBTs model a colony of individuals that reproduce and die.
[Bean, Kontoleon, Taylor ’04] [Hautphenne, Latouche, Remiche ’08]

Simple example
a = P [ dies without spawning]
b = P [ spawns into two independent copies ]

Question: starting from one individual, what is P [extinction]?
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A simple example

Simple example
a = P [ dies without spawning]
b = P [ spawns into two independent copies ]

Question: starting from one individual, what is P [extinction]?

It is a nice elementary problem: x = P [extinction]

x = a + b x2

Either dies outright
Or it spawns into two independent childs. . .

. . . and the progenies of both die out
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The minimal solution

x = a + b x2 has two nonnegative solutions. One is always 1,
for a + b = 1 ( either reproduces or dies without)

Easy to prove that P [extinction] is the smaller solution. Three cases:
Subcritical P [extinction] = 1 > x2 (i.e. extinction = always)

Supercritical P [extinction] = x2 < 1
Critical limit case: 1 double solution

P [extinction] = 1, but needs an infinite time on average
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The vector case

Each can be in N different states (e.g. age ranges)

a ∈ RN
+ ai = P [ i dies]

b ∈ RN×N×N
+ bijk = P [ i spawns into j and k ]

b contains N3 data!

Think to b as a vector-valued bilinear form

b : RN
+ × RN

+ → RN
+, b(u, v) =

∑
j,k

bijkujvk

Our equation becomes
Markovian binary trees

x = a + b(x , x) (MBT)

F. Poloni (SNS) Quadratic vector eqn’s Householder 2011 5 / 15



The classical algorithms
Markovian binary trees

x = a + b(x , x) (MBT)

e = ones(N, 1) is always a solution
P [extinction] = minimal nonnegative solution

Up to 2N nonnegative sol’ns, but there is always a minimal one:
x̂ s.t. x̂ ≤ x (component-by-component) for any other solution x

Subcritical or critical: e is minimal, nothing to do

Supercritical: some other 0 ≤ x̂ ≤ e is minimal: how to compute it?

F. Poloni (SNS) Quadratic vector eqn’s Householder 2011 6 / 15



The classical algorithms
Markovian binary trees

x = a + b(x , x) (MBT)

Functional iterations [BKT ’04]

xk+1 = a + b(xk , xk)

or something more elaborate, like

xk+1 = a + b(xk+1, xk)

i.e.

xk+1 =
(
I − b(·, xk)

)−1a

b(·, xk): RN
+ → RN

+: just a matrix
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The classical algorithms
Markovian binary trees

x = a + b(x , x) (MBT)

Functional iterations [BKT ’04]
Newton method [HLR ’08]

xk+1 =
(
I − b(·, xk)− b(xk , ·)

)−1a

+ variants, e.g. [Hautphenne, Van Houdt ’10]
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The classical algorithms
Markovian binary trees

x = a + b(x , x) (MBT)

Functional iterations [BKT ’04]
Newton method [HLR ’08]

When started from x0 = 0, they converge monotonically:
0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ x∗

neat probabilistic interpretations:
xk = P [extinction truncated to the k-th generation, or to a subtree]
Become slower when close to critical:
need more generations to capture the behaviour of the tree
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Deflation

Close to a double solution, and for Newton double = trouble

But one of these solutions x = e is known, we want to deflate it:
Set y := e − x survival probability; (MBT) becomes
The optimistic equation

y =
(
b(e − y , ·) + b(·, e)

)︸ ︷︷ ︸
:= Py

y = Py y

Functional it’ns/Newton in this form: nothing changes, but. . .
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Perron vector-based algorithms

The optimistic equation

y =
(
b(e − y , ·) + b(·, e)

)︸ ︷︷ ︸
:= Py

y = Py y

New way to see the same equation: y is the Perron vector of a matrix
depending (linearly) on y itself

y = PV (Py ) (PE)

(+suitable normalization for the eig’vec: wT · Residual = 0 for some w)

Fixed point iteration based on (PE): yk+1 = PV (Pyk )

Newton’s method
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Numerical experiments
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Figure: CPU time for a parameter-dependent problem [BKT ’08, example 1];
lower=better

F. Poloni (SNS) Quadratic vector eqn’s Householder 2011 9 / 15



Numerical experiments

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4
·10−3

problem parameter λ

CP
U

tim
e

Classical Newton
Perron fixed point
Perron-Newton

Figure: CPU time for a parameter-dependent problem [BKT ’08, example 2];
lower=better
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Convergence results

Convergence is not monotonic
Convergence is not guaranteed for very far-from-critical problems

Theorem [Meini, P., SIMAX 2011]
Explicit formula for the Jacobian of the Perron iteration
For a special normalization choice,
if problem → critical then ρ(Jac)→ 0

Thus, locally convergent for close-to-critical
with speed that tends to superlinear

Theorem [Bini, Meini, P., NLAA (to appear)]
When the algorithm converges, it converges to the right solution x̂
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Applicability

We may ensure applicability even when strict positivity/irreducibility
assumptions do not hold:

1 deflate away entries i s.t. x̂i = 0: they can be determined in O(N3)
from the nonzero pattern of a and b

2 all Py have the same nonzero pattern; if they are reducible, we may
split the problem into two subproblems

(as with linear equations; idea: if Py =

[
P11 P12
0 P22

]
, we can solve for

the second block alone and back-substitute)
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A unifying framework

Why is this problem interesting?

Mx=a+b(x,x)

XCX − AX − XD + B = 0 (Nonsym. Riccati)
PX 2 + QX + R = 0 (QBD equation){
Ix = (Py) .*x + e
Iy = (Qx) .*y + e

(Transport theory)

With a bit of vec(·), several matrix equations can be reduced to (MBT)
Although no known (x = e) solution → no PV-based algorithms
Open problem
Can we recover something similar from partial information (e.g., one known
eigenpair of X )? Would carry over to many matrix equations
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Common aspects
minimal solution x∗ ≥ 0, i.e., x∗ ≤ x for any other solution x
functional iterations and Newton’s method exhibit monotonic
convergence: 0 = x0 ≤ x1 ≤ x2 ≤ · · · → x∗

close-to-critical problems: when close to a double solution,
convergence is slower and more unstable

Common framework to work with several equations from different
applications [P., to appear (LAA)]

Advantages:
unified proofs: clear hypotheses, role of strict positivity of x∗
no matrix structure or spectral properties needed
unified algorithms: take an algorithm for one equation, apply it to the
others
Example a Newton variant [Hautphenne, Van Houdt ’10] useful for
the transport theory eqn
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Conclusions

Open questions
Understand doubling methods (SDA/Cyclic Reduction) in this
framework:

If we try to construct doubling for (MBT) we get Newton instead;
are the two related?
Shift technique + what happens to spectral properties?
Perron-based algorithms without a “full” known solution x = e

Thanks for your attention!
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