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Plan

What is a fluid queue?

What is doubling? (ADDA)

What is componentwise accuracy?

What is the shift technique?

How do we combine them all together?

Poloni Accurate shift ILAS23 2 / 23



Fluid queues

Fluid queue: “infinite-size bucket” in which the fluid level X (t) changes
with a rate which depends on the state φ(t) of a continuous-time Markov
chain with generator matrix Q.
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[Moran ’54, Mitra ’88, Kulkarni ’97, Ahn-Ramaswami ’03, Bean-O’Reilly-Taylor ’05, etc.]

In this talk: rates ±1; states S = S+ ∪ S−.

Ψij = P[first return to X (t) = 0 in state φ(t) = j ∈ S− | φ(0) = i ∈ S+].
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M-matrix algebraic Riccati equation

M-matrix algebraic Riccati equation (MARE):

Q+− + Q++Ψ+ΨQ−− +ΨQ−+Ψ = 0.

The matrix

M = −Q = −
[
Q−− Q−+

Q+− Q++

]
is an irreducible, singular M-matrix.

Q1 = 0, πQ = 0 for a row vector π > 0.
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Eigenvalues

The most important thing: eigenvalues.

Solving the MARE ↔ finding an invariant subspace:[
−Q−− −Q−+

Q+− Q++

]
︸ ︷︷ ︸

:=H

[
In−
Ψ

]
=

[
In−
Ψ

]
(−Q−− − Q−+Ψ)︸ ︷︷ ︸

:=−U

.

Λ(H) = { λ1, λ2, . . . , λn+︸ ︷︷ ︸
=Λ(V )⊂left half-plane

, λn++1, λn++2, . . . , λn++n−︸ ︷︷ ︸
=Λ(−U)⊂right half-plane

}.

For simplicity we assume λn++1 = 0: recurrent process.

Critical case: λn+ ≈ 0. Algorithms slow down.
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Spectrum of H – figure

Figure: Λ(H) in the critical case where λn+ = λn++1 = 0
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Alternating-direction doubling algorithm [Wang et al. 2012]

1 Choose rates

α ≥ αopt = max
i
|(Q++)ii |, β ≥ βopt = max

i
|(Q−−)ii |.

2 Compute initial values[
E0 G0

H0 F0

]
= −

[
Q−− − αI Q−+

Q+− Q++ − βI

]
︸ ︷︷ ︸

M-matrix

−1 [
Q−− + βI Q−+

Q+− Q++ + αI

]
︸ ︷︷ ︸

non-negative

.

3 Iterate

Pk =

[
Ek Gk

Hk Fk

]
7→ Pk+1 =

[
Ek+1 Gk+1

Hk+1 Fk+1

]
,

Ek+1 = Ek(I − GkHk)
−1Ek ,

Fk+1 = F (I − HkGk)
−1Fk ,

Gk+1 = Gk + Ek(I − GkHk)
−1GkFk ,

Hk+1 = Hk + Fk(I − HkGk)
−1HkEk .
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What is ADDA?

The algebra constructing a factorization

f (H)2
k
=

[
I −Gk

0 Fk

]−1 [
Ek 0
−Hk I

]
, f (z) =

z − β

z + α
.

The interpretation Constructing a “level-crossing” QBD associated to the
queue

A−1 =

[
0 0
0 F0

]
, A0 =

[
0 G0

H0 0

]
, A1 =

[
E0 0
0 0

]
,

and applying Cyclic Reduction to it. [Bean-Nguyen-P. ’18]

The practice Fastest iteration in literature for this problem.

Added benefit: componentwise accuracy.
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Componentwise accuracy

An algorithm to compute a matrix/vector quantity Ψ is componentwise
accurate if all entries, even tiny ones, are computed with small forward
error

|Ψcomputed
ij −Ψij |

Ψij
≈ u

Very strict requirements:

High condition numbers prevent forward stable computations.

Often errors are proportional to ∥Ψ∥ or maxij Ψij . E.g., when
computing

Ψ =
[
0.5 0.499999 0.000001

]
on the last component we expect ≈ 10 correct digits, not ≈ 16.

Poloni Accurate shift ILAS23 9 / 23



Keys to componentwise accuracy

Triplet representations

Given an M-matrix M, we can compute M−1 with componentwise
accuracy if we know (in addition to the entries of M) vectors v > 0,w ≥ 0
such that Mv = w.

GTH-like algorithm Modified Gaussian elimination, using the relation
Mv = w to evaluate pivots more accurately. [Alfa, Xue, Ye ’01]

Example In the ADDA initial values, we need M−1
α,β, where

Mα,β = −
[
Q−− − αI Q−+

Q+− Q++ − βI

]
.

Solution Since Q1 = 0, we know that the M-matrix satisfies exactly
Mα,β1 =

[
α1
β1

]
.
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Keys to componentwise accuracy

More generally:

No Inaccurate Cancellation (NIC) principle [Demmel-Dumitriu-Holtz-Koev

’08]

To achieve componentwise accuracy, we must avoid subtractions a− b
with a ≈ b.

Example In the ADDA initial values, we need

Q++ + αI , where α ≥ αopt = max
i
|(Q++)ii |.

Choosing α = αopt may lead to trouble if e.g. diag(Q++) =

[
−1

−0.99999

]
.

Solution choose α a bit larger, for instance α = 1.25αopt. Convergence
speed is slightly degraded, but we gain in accuracy.

Using these techniques, one can make ADDA componentwise
accurate. [Xue-Xu-Li ’12, Nguyen-P ’15, Xue-Li ’17]
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Spectrum of f (H)

The most important thing: eigenvalues.

Recall that f (z) = z−β
z+α . In ADDA we work with f (H), with eigenvalues

Λ(f (−U)) = {f (λn++1), f (λn++2), . . . , f (λn++n−)} ⊂ {|z | ≤ β
α} and

Λ(f (V )) = {f (λ1), f (λ2), . . . , f (λn+)} ⊂ {|z | ≥ β
α}.

ADDA convergence depends on the parameter

ξ = ρ(f (−U)) ρ(f (V )−1) =

∣∣∣∣ f (λn++1)

f (λn+)

∣∣∣∣ ≤ 1 :

If ξ < 1, ∥Hk −Ψ∥ ∼ ξ2
k
.

If ξ = 1 (null recurrent queue), ∥Hk −Ψ∥ ∼ 2−k .

Problem

Slow convergence when ξ = 1 or ξ ≈ 1: how to speed it up?
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Spectrum of f (H) – figure

Figure: Λ(f (H)) in the critical case where λn+ = λn++1 = 0
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Shift: from H to Ĥ [Guo-Iannazzo-Meini ’07]

Shift technique: rank-1 modification to accelerate convergence in
(near-)critical cases.
We choose η > 0 and p ≥ 0 such that pT1 = 1.

H Ĥ = H+ η1pT

Q Q̂ = Q − η

[
1n−
−1n+

]
pT

Q+− + Q++Ψ+ Q̂+− + Q̂++Ψ+

ΨQ−− +ΨQ−+Ψ = 0 ΨQ̂−− +ΨQ̂−+Ψ = 0

Ψ same Ψ

λn++1 = 0 λ̂n++1 = η

Λ(−U) = {0, λn++1, . . . , λn++n−} Λ(−Û) = {η, λn++1, . . . , λn++n−}

ξ ξ̂ < ξ (at least when η < β).

The technique may decrease the number of steps dramatically.
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Componentwise accurate construction of P̂0

In this talk: Can we combine the two improvements? Shift technique and
componentwise accurate computations?

Q̂ = Q − η

[
1n−
−1n+

]
pT

Problem: The sign properties may be lost, even for tiny values of η!

[
Ê0 Ĝ0

Ĥ0 F̂0

]
= −

[
Q̂−− − α̂I Q̂−+

Q̂+− Q̂++ − β̂I

]
︸ ︷︷ ︸

M-matrix???

−1 [
Q̂−− + β̂I Q̂−+

Q̂+− Q̂−− + α̂I

]
︸ ︷︷ ︸

non-negative???

.
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Delayed shift

Idea: When α, β are fixed, P̂0 is a rank-1 modification of P:

P̂0 = P0 − η (α+ β)
upTMα,β

−1

1 + ηpTu︸ ︷︷ ︸
=:Ση

, u = Mα,β
−1

[
1n−
−1n+

]
. (*)

We can first compute P0 > 0, then construct P̂0 by subtraction (delayed
shift).

P0 − Ση contains subtractions, but we can compute all the quantities
in (*) and then choose η afterwards to satisfy two entrywise conditions:

P̂0 > 0

No Inaccurate Cancellation in P0 − Ση.

The range of allowed values for η is often much larger than when applying
the regular “non-delayed” shift.
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The missing steps

Triplet representations: can be computed from the relation[
τ2

k
Êk Ĝk

Ĥk τ−2k F̂k

]
1 = 1, with τ =

α+ η

β − η
. (T)

Positivity, applicability, convergence: can be proved by mimicking the
original proofs in ADDA: the only assumptions they need are P̂0 ≥ 0
and (T).

Forward error bound: can be obtained, though worse than in the
non-shifted case:

|computed(Σ)− Σ| ≤ O(n3u)︸ ︷︷ ︸
machine prec.

1 + pTM−1
αβ 1

(1 + pTu)2
(α+ β)M−1

αβ 1p
TM−1

αβ .︸ ︷︷ ︸
not Σ, possibly larger

Poloni Accurate shift ILAS23 17 / 23



Example 1 [Nguyen-P ’15, Example 5.1]

An example with Q with imbalanced entries.

Λ(H) = {−20.0000,−1.5625,−0.0100, 0.0000, 2.5575, 19.9800}

Λ(f (H)) = {−6.9970,−1.2314,−1.0003,−0.9990,−0.7078, 0.1428}

without shift: convergence rate ξ = 0.9990.

non-accurate shift: ξ̂ = 0.7078.
Optimal η = β = 14.9850, p = 1

n1.

accurate shift, imposing P̂0 ≥ 0: ξ̂ = 0.8575.
η = 1.1429, f (η) = −0.8575, p = e5.

accurate shift, imposing NIC in P̂0 = P0 − Ση: ξ̂ = 0.9777.
η = 0.1614, f (η) = −0.9777, p = e5.
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Example 1

Figure: Normwise relative error ∥Hk −Ψ∥/∥Ψ∥ vs. iteration k.
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Example 1

Figure: Componentwise relative error maxi,j |(Hk)ij −Ψij |/Ψij vs. iteration k.
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Example 2
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Example 3
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Conclusions

You can have your cake (shift) and eat it, too (componentwise
accuracy). Se puede estar a la vez en la procesión y repicando las
campanas

In many examples, we can lower the number of iterations to match
that of shift, while keeping the original high accuracy.

Are there benefits in delaying the shift even further?

Reference Elena Addis’s thesis at UNIFI, Elementwise accurate algorithms
for nonsymmetric algebraic Riccati equations associated with M-matrices,
https://hdl.handle.net/2158/1275470. Article version in
preparation.

Thanks for your attention!
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