Geometric means of more than two matrices

$\begin{array}{llll}\text { D. A. Bini } & \text { B. } \text { lannazzo }^{2} & \text { B. Meini }\end{array}{ }^{1} \quad$ Federico Poloni ${ }^{3}$
${ }^{1}$ University of Pisa
${ }^{2}$ University of Perugia
${ }^{3}$ Scuola Normale Superiore, Pisa

SIAM Linear Algebra conference 2009

A physical problem

Elasticity experiments [Hearmon, 1952; Moakher, 2006]:
Several experimental measures of either the stiffness tensor or its inverse (compliance tensor).

Problem

How to average them?

Requirement: Averaging inverses (compliance) should yield the same result as averaging the tensors and then inverting

$$
M(A, B, C, \ldots)^{-1}=M\left(A^{-1}, B^{-1}, C^{-1}, \ldots\right)
$$

In the scalar case, this holds true for the geometric mean

A mathematical problem

At the same time [Ando-Li-Mathias, 2003; Bhatia, 2005; + others]

Definition

$$
G M\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\sqrt[k]{a_{1} a_{2} \ldots a_{k}} \quad \text { for scalar } a_{i}>0
$$

Problem

Find a sensible generalization of the geometric mean to SPD matrices

What do we expect from a geometric mean?

[Ando-Li-Mathias, 2003]: ten properties that a bona-fide geometric mean should have:

- compatibility with scalars: $G M(A, B, C)=(A B C)^{1 / 3}$ for commuting A, B, C
- simmetry: $G M(A, B, C)=G M(B, A, C)=\ldots$
- monotonicity: $A<A^{\prime} \Rightarrow G M(A, B, C)<G M\left(A^{\prime}, B, C\right)$
- Congruence invariance: $G M\left(S^{*} A S, S^{*} B S, S^{*} C S\right)=S^{*} G M(A, B, C) S$
- Inversion invariance: $G M\left(A^{-1}, B^{-1}, C^{-1}\right)=G M(A, B, C)^{-1}$
$\ldots+$ others (concavity, continuity...)

Remark

These do not define GM uniquely!

Mean of two matrices

There is already a sound definition of the geometric mean of two matrices

Definition

$$
G M(A, B)=A\left(A^{-1} B\right)^{1 / 2}
$$

(not what you would expect at first!)

Compatibility with scalars + congruence invariance determine it uniquely

The geometrical meaning of the geometric mean

Natural Riemannian metric on SPD matrices

$$
d s=\left\|A^{-1 / 2} d A A^{-1 / 2}\right\|_{2}
$$

gets more and more "curved" when A approaches singularity

Example

In dimension 1, logarithmic scale

The geometrical meaning of the geometric mean

Natural Riemannian metric on SPD matrices

$$
d s=\left\|A^{-1 / 2} d A A^{-1 / 2}\right\|_{2}
$$

Explicit expression for the geodesic joining A and B :

$$
\gamma(t)=A\left(A^{-1} B\right)^{t} \quad t \in[0,1]
$$

Geometric mean $=$ midpoint of the geodesic!

Generalizing to $k \geq 3$ matrices

Problem

How do we define the mean of $k \geq 3$ matrices?
The ALM properties do not define it uniquely!
Idea [Ando-Li-Mathias, 2003]: symmetrization procedure

$$
\begin{array}{ll}
A_{1}=G M(B, C) & A_{2}=G M\left(B_{1}, C_{1}\right) \\
B_{1}=G M(C, A) & B_{2}=G M\left(C_{1}, A_{1}\right) \\
C_{1}=G M(A, B) & C_{2}=G M\left(A_{1}, B_{1}\right)
\end{array}
$$

A_{i}, B_{i}, C_{i} converge to the same matrix $G M_{A L M}(A, B, C)$

ALM construction

$$
\begin{array}{ll}
A_{1}=G M(B, C) & A_{2}=G M\left(B_{1}, C_{1}\right) \\
B_{1}=G M(C, A) & B_{2}=G M\left(C_{1}, A_{1}\right) \\
C_{1}=G M(A, B) & C_{2}=G M\left(A_{1}, B_{1}\right)
\end{array}
$$

ALM construction

$$
\begin{array}{ll}
A_{1}=G M(B, C) & A_{2}=G M\left(B_{1}, C_{1}\right) \\
B_{1}=G M(C, A) & B_{2}=G M\left(C_{1}, A_{1}\right) \\
C_{1}=G M(A, B) & C_{2}=G M\left(A_{1}, B_{1}\right)
\end{array}
$$

On the plane (Euclidean metric), converges to the centroid of $A B C$.

ALM mean: properties

- Constructive definition
- Satisfies the ten ALM properties
- May be generalized to $k=4$ or more: $A_{1}=G M(B, C, D, \ldots)$
- Slow to compute: linear convergence, cost grows as k ! (factorial)

Problem

Is there a faster algorithm to compute it?

Problem

Is there a faster algorithm to compute another mean that satisfies the ten ALM properties?

Considering the medians

Theorem

On the Euclidean plane, the three medians of a triangle meet in the centroid at $2 / 3$ of their length.

No iteration needed! Can we do the same for matrices?

Considering the medians

In the geometry of SPD matrices, the medians don't meet!

Considering the medians

In the geometry of SPD matrices, the medians don't meet!
\ldots... but the points at $2 / 3$ of the corresponding geodesics are very close

Algorithm

$A_{1}=$ the point at $2 / 3$ of the geodesic joining A and $G M(B, C)$
$B_{1}=$ the point at $2 / 3$ of the geodesic joining A and $G M(C, A)$
$C_{1}=$ the point at $2 / 3$ of the geodesic joining A and $G M(A, B)$
(They are not the same point!)
A_{2}, B_{2}, C_{2} defined in the same way starting from $A_{1} B_{1} C_{1}$, and so on
Theorem
A_{i}, B_{i}, C_{i} converge to the same matrix $G M_{\text {new }}(A, B, C)$

Properties of the new mean

- Constructive definition
- Generally different from GM $A L M$
- Satisfies the ten ALM properties
- May be generalized to $k \geq 4$:
$A_{1}=1 / k$ of the geodesic joining A and $G M(B, C, D, \ldots)$
- Convergence order 3: faster than GMALM
- ... though it still grows as k ! (factorial)

Some numbers

5
1.92542947898189
2.90969918536362
2.35774114351751
2.61639158463414
2.48316587472793
2.54876054375880
2.51571460655576
2.53217471946628
2.52392903948587
2.52804796243998
2.52598752310721
2.52701749813482
2.52650244948321
2.52675995852183
2.52663120018107
2.52669557839604
2.52666338904971
2.52667948366316
2.52667143634151

5

2.59890269690271
2.53027293208879
2.53025171828977
2.53025171828977

Example

$$
A=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
4 & 3 \\
3 & 3
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right]
$$

Shown $\left(A_{i}\right)_{11}$ for both iterations

Elasticity measures, data from [Hearmon, '52] (up to 66×6 matrices): up to $100 \times$ faster

New directions

Idea: can we obtain new means from the composition of means with less arguments? E.g.

$$
\begin{gathered}
A, B, C, D \mapsto G M(G M(A, B), G M(C, D)) \\
A, B, C \mapsto G M(A, G M(B, C))
\end{gathered}
$$

We need a new framework to deal with non-symmetric mean-like functions.

Definition

A quasi-mean is a map that is not symmetric in its arguments, but satisfies the other Ando-Li-Mathias properties (with some technical changes).

Invariance groups

Definition

Q quasi-mean, σ permutation:

$$
(Q \sigma)\left(A_{1}, A_{2}, A_{3}\right):=Q\left(A_{\sigma(1)}, A_{\sigma(2)}, A_{\sigma(3)}\right)
$$

Definition

Invariance group of a quasi-mean Q :

$$
I(Q):=\{\text { all } \sigma \text { s.t. } Q \sigma(\ldots)=Q(\ldots)\}
$$

Q quasi-mean $+\{I(Q)=$ all permutations $\} \Rightarrow Q$ is a geometric mean (all ALM properties)

A positive result

This is a geometric mean of four matrices:

$$
\begin{aligned}
& A, B, C, D \mapsto G M(G M(G M(A, B), G M(C, D)), \\
& G M(G M(A, C), G M(B, D)), \\
&G M(G M(A, D), G M(B, C)))
\end{aligned}
$$

A mean of 4 matrices is reduced to one of 3 : computational advantage ($4 \times$ to $10 \times$ speedup on the elasticity data)

Negative results

Strong assumption

The symmetries of a quasi-mean obtained by composition (like $Q(R(\ldots), S(\ldots))$) are only those deriving from the symmetries of the underlying quasi-means (like Q, R, S) that is, no "unexpected properties" appear

Negative results

Strong assumption

The symmetries of a quasi-mean obtained by composition (like $Q(R(\ldots), S(\ldots))$) are only those deriving from the symmetries of the underlying quasi-means (like Q, R, S)

Theorem

A geometric mean of $k \geq 5$ matrices cannot be built composing (quasi-)means of less matrices

Idea of the proof: the group of permutations of $k \geq 5$ elements is (nearly) a simple group

Negative results

Strong assumption

The symmetries of a quasi-mean obtained by composition (like $Q(R(\ldots), S(\ldots))$) are only those deriving from the symmetries of the underlying quasi-means (like Q, R, S)

```
Theorem
A geometric mean of k \geq5 matrices cannot be built composing (quasi-)means of less matrices
```

```
Theorem
If a geometric mean of k\geq5 matrices is obtained via composition of
simpler (quasi-)means + a limit process (like GMALM,GM new), then the ingredients must be means of \(k\) - 1 matrices
```

We cannot do any better than the current algorithms

Thanks for your attention!

