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A physical problem

Elasticity experiments [Hearmon, 1952; Moakher, 2006]:
Several experimental measures of either the stiffness tensor or its inverse
(compliance tensor).

Problem

How to average them?

Requirement: Averaging inverses (compliance) should yield the same result
as averaging the tensors and then inverting

M(A,B,C , . . . )−1 = M(A−1,B−1,C−1, . . . )

In the scalar case, this holds true for the geometric mean
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A mathematical problem

At the same time [Ando–Li–Mathias, 2003; Bhatia, 2005; + others]

Definition

GM(a1, a2, . . . , ak) = k
√

a1a2 . . . ak for scalar ai > 0

Problem

Find a sensible generalization of the geometric mean to SPD matrices
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What do we expect from a geometric mean?

[Ando–Li–Mathias, 2003]: ten properties that a bona-fide geometric mean
should have:

compatibility with scalars: GM(A,B,C ) = (ABC )1/3 for commuting
A, B, C

simmetry: GM(A,B,C ) = GM(B,A,C ) = . . .

monotonicity: A < A′ ⇒ GM(A,B,C ) < GM(A′,B,C )

Congruence invariance: GM(S∗AS ,S∗BS ,S∗CS) = S∗GM(A,B,C )S

Inversion invariance: GM(A−1,B−1,C−1) = GM(A,B,C )−1

. . . + others (concavity, continuity. . . )

Remark

These do not define GM uniquely!
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Mean of two matrices

There is already a sound definition of the geometric mean of two matrices

Definition

GM(A,B) = A(A−1B)1/2

(not what you would expect at first!)

Compatibility with scalars + congruence invariance determine it uniquely
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The geometrical meaning of the geometric mean

Natural Riemannian metric on SPD matrices

ds =
∥∥∥A−1/2dAA−1/2

∥∥∥
2

gets more and more “curved” when A approaches singularity

Example

In dimension 1,
logarithmic scale

x

y

log(x)

F. Poloni (SNS) Means of k ≥ 3 matrices SIAM LA09 6 / 19



The geometrical meaning of the geometric mean

Natural Riemannian metric on SPD matrices

ds =
∥∥∥A−1/2dAA−1/2

∥∥∥
2

Explicit expression for the geodesic joining A and B:

γ(t) = A(A−1B)t t ∈ [0, 1]

Geometric mean = midpoint of the geodesic!

F. Poloni (SNS) Means of k ≥ 3 matrices SIAM LA09 6 / 19



Generalizing to k ≥ 3 matrices

Problem

How do we define the mean of k ≥ 3 matrices?

The ALM properties do not define it uniquely!

Idea [Ando–Li–Mathias, 2003]: symmetrization procedure

A1 = GM(B,C ) A2 = GM(B1,C1)

B1 = GM(C ,A) B2 = GM(C1,A1) . . .

C1 = GM(A,B) C2 = GM(A1,B1)

Ai , Bi , Ci converge to the same matrix GMALM(A,B,C )
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ALM construction

A1 = GM(B,C ) A2 = GM(B1,C1)

B1 = GM(C ,A) B2 = GM(C1,A1) . . .

C1 = GM(A,B) C2 = GM(A1,B1)
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ALM construction

A1 = GM(B,C ) A2 = GM(B1,C1)

B1 = GM(C ,A) B2 = GM(C1,A1) . . .

C1 = GM(A,B) C2 = GM(A1,B1)
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On the plane (Euclidean metric), converges to the centroid of ABC .
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ALM mean: properties

Constructive definition

Satisfies the ten ALM properties

May be generalized to k = 4 or more: A1 = GM(B,C ,D, . . . )

Slow to compute: linear convergence, cost grows as k! (factorial)

Problem

Is there a faster algorithm to compute it?

Problem

Is there a faster algorithm to compute another mean that satisfies the ten
ALM properties?
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Considering the medians

Theorem

On the Euclidean plane, the three medians of a triangle meet in the
centroid at 2/3 of their length.
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No iteration needed! Can we do the same for matrices?
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Considering the medians
In the geometry of SPD matrices, the medians don’t meet!
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Considering the medians
In the geometry of SPD matrices, the medians don’t meet!
. . . but the points at 2/3 of the corresponding geodesics are very close
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Algorithm

A1 = the point at 2/3 of the geodesic joining A and GM(B,C )
B1 = the point at 2/3 of the geodesic joining A and GM(C ,A)
C1 = the point at 2/3 of the geodesic joining A and GM(A,B)

(They are not the same point!)

A2, B2, C2 defined in the same way starting from A1B1C1, and so on

Theorem

Ai , Bi , Ci converge to the same matrix GMnew (A,B,C )
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Properties of the new mean

Constructive definition

Generally different from GMALM

Satisfies the ten ALM properties

May be generalized to k ≥ 4:
A1=1/k of the geodesic joining A and GM(B,C ,D, . . . )

Convergence order 3: faster than GMALM

. . . though it still grows as k! (factorial)
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Some numbers
5
1.92542947898189
2.90969918536362
2.35774114351751
2.61639158463414
2.48316587472793
2.54876054375880
2.51571460655576
2.53217471946628
2.52392903948587
2.52804796243998
2.52598752310721
2.52701749813482
2.52650244948321
2.52675995852183
2.52663120018107
2.52669557839604
2.52666338904971
2.52667948366316
2.52667143634151

5
2.59890269690271
2.53027293208879
2.53025171828977
2.53025171828977

Example

A =

[
5 2
2 1

]
B =

[
4 3
3 3

]
C =

[
1 0
0 5

]
Shown (Ai )11 for both iterations

Elasticity measures, data from [Hearmon, ’52]
(up to 6 6× 6 matrices): up to 100× faster

F. Poloni (SNS) Means of k ≥ 3 matrices SIAM LA09 14 / 19



New directions

Idea: can we obtain new means from the composition of means with less
arguments? E.g.

A,B,C ,D 7→ GM(GM(A,B),GM(C ,D))

A,B,C 7→ GM(A,GM(B,C ))

We need a new framework to deal with non-symmetric mean-like functions.

Definition

A quasi-mean is a map that is not symmetric in its arguments, but satisfies
the other Ando-Li-Mathias properties (with some technical changes).
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Invariance groups

Definition

Q quasi-mean, σ permutation:

(Qσ)(A1,A2,A3) := Q(Aσ(1),Aσ(2),Aσ(3))

Definition

Invariance group of a quasi-mean Q:

I (Q) := {all σ s.t. Qσ(. . . ) = Q(. . . )}

Q quasi-mean + {I (Q) = all permutations} ⇒ Q is a geometric mean
(all ALM properties)
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A positive result
This is a geometric mean of four matrices:

A,B,C ,D 7→ GM(GM(GM(A,B),GM(C ,D)),

GM(GM(A,C ),GM(B,D)),

GM(GM(A,D),GM(B,C )))

GM

GM

GM

A B

GM

C D

GM

GM

A C

GM

B D

GM

GM

A D

GM

B C

A mean of 4 matrices is reduced to one of 3: computational advantage
(4× to 10× speedup on the elasticity data)
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Negative results

Strong assumption

The symmetries of a quasi-mean obtained by composition (like
Q(R(. . . ), S(. . . ))) are only those deriving from the symmetries of the
underlying quasi-means (like Q, R, S)

that is, no “unexpected properties” appear
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Negative results

Strong assumption

The symmetries of a quasi-mean obtained by composition (like
Q(R(. . . ), S(. . . ))) are only those deriving from the symmetries of the
underlying quasi-means (like Q, R, S)

Theorem

A geometric mean of k ≥ 5 matrices cannot be built composing
(quasi-)means of less matrices

Idea of the proof: the group of permutations of k ≥ 5 elements is (nearly)
a simple group
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Negative results

Strong assumption

The symmetries of a quasi-mean obtained by composition (like
Q(R(. . . ), S(. . . ))) are only those deriving from the symmetries of the
underlying quasi-means (like Q, R, S)

Theorem

A geometric mean of k ≥ 5 matrices cannot be built composing
(quasi-)means of less matrices

Theorem

If a geometric mean of k ≥ 5 matrices is obtained via composition of
simpler (quasi-)means + a limit process (like GMALM , GMnew ), then the
ingredients must be means of k-1 matrices

We cannot do any better than the current algorithms
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Thanks for your attention!
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