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Introduction Algebraic Riccati equations

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

XCX − AX − XE + B = 0

A,B,C ,E ,X ∈ Rn×n (NARE)

Recent interest in the literature e.g. [Guo–Laub ’00, Lu ’05,
Guo–Higham ’05, Bini–Iannazzo–Latouche–Meini ’06]

X solves (NARE) ⇔
[
E −C
B −A

] [
I
X

]
=

[
I
X

]
(E − CX )

Solutions ⇔ invariant subspaces of H :=

[
E −C
B −A

]
• Explicit calculation of the eigenvectors: numerical problems

• Iterative methods: cost O(n3)/step, quadratic convergence
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Introduction Algebraic Riccati equations

One-group neutron transport equation

{
(µ + α)

∂

∂x
+ 1

}
ϕ(x , µ) =

c

2

∫ 1

−1
ϕ(x , ω)dω

ϕ(0, µ) = f (µ), µ > −α, |µ| 6 1,

lim
x→∞

ϕ(x , µ) = 0.

Propagation of neutrons through a slab of shielding material
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Introduction Algebraic Riccati equations

One-group neutron transport equation

{
(µ + α)

∂

∂x
+ 1

}
ϕ(x , µ) =

c

2

∫ 1

−1
ϕ(x , ω)dω

⇓
Reduction to kernel + Gaussian quadrature

∫ 1
0 f (x)dx ≈

∑
wi f (xi )

⇓
The resulting equation

∆X + XD = (Xq + e)(eT + qTX ) (NT)

D,∆ “positive” diagonals, e, q > 0 vectors

(NT) is a NARE with rank structure:

A = ∆− eqT , B = eeT , C = qqT , E = D − qeT
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Introduction Algebraic Riccati equations

Algorithms for NARE

1. Newton’s method [C.H. Guo–Laub ’00]

2. Newton applied to Lu’s iteration [Lu ’05] — only for (NT)

3. Structured doubling algorithm [X.X. Guo–Lin–Xu ’06]

4. Cyclic reduction [Ramaswami ’99 and others]

All with cost O(n3)/step, quadratic convergence

Our results

• Structured versions for (NT), with cost O(n2)/step

• Shift technique [He–Meini–Rhee ’01] in the structured algorithms

• Interesting connections: 1 = 2, 3 ⊆ 4

• New variants to 4
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Introduction Useful results

Riccati equations and M-matrices

Classical hypothesis — includes case (NT)

M =

[
E −C
−B A

]
is an M-matrix

With this assumption,

• H =

[
E −C
B −A

]
has:

n eigenvalues in the positive half-plane <(λ) > 0
n in the negative half-plane

(eventually some on the border)

• Exists S minimal nonnegative solution

• S ⇔ eigenvalues with <(λ) > 0

• The classical algorithms converge to S
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Introduction Useful results

Example
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Introduction Useful results

Cauchy-like matrices

Displacement operator

∇R,S(X ) := RX − XS

R, S diagonal matrices

Cauchy-like matrices: ∇R,S(X ) is low rank ⇔

Xij =
ui · vj

Rii − Sjj
whenever Rii 6= Sjj

ui , vj (generators) are 1× r , r × 1 vectors

Usually one requires Rii 6= Sjj for all i ,j

Instead, we will also need the case R = S (Trummer-like):
nothing is known about the main diagonal of X

F. Poloni (SNS, Univ. Pisa) NAREs with rank structure Moscow, 23 July 2007 8 / 25



Introduction Useful results

The GKO algorithm

Solving linear systems with Cauchy-like matrices: GKO algorithm
[Gohberg–Kailath–Olshevsky ’95]

During Gaussian elimination,

M −→

c11 c12

0 C

 with C Cauchy-like

Instead of updating the elements of C (cost: O(n3)), update its
generators (cost: O(n2))

Trummer-like case is similar:

• Update the diagonal of C as in the traditional Gaussian
elimination O(n2)

• Update the other elements as in GKO O(n2)
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Newton-like algorithms Lu’s algorithm

Lu’s algorithm

The resulting equation

∆X + XD = (Xq + e)(eT + qTX ) (NT)

Let u := Xq + e, vT := eT + qTX

(NT ) ⇐⇒ ∇∆,−D(X ) = uvT

X is Cauchy-like, andu = ∇−1
∆,−D(uvT )q + e

v =
(
∇−1

∆,−D(uvT )
)T

q + e
(LU)

Let w :=

[
u
v

]
; (LU) is F (w) = 0, solve with Newton’s method

wk+1 = wk − (∇Fwk
)−1 F (wk)

The same in O(n2): ∇F is Trummer-like, use GKO
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Newton-like algorithms Newton’s algorithm

Newton’s algorithm

NARE

XCX − AX − XE + B = 0

Newton’s method applied directly to R(X ) = XCX − AX − XE + B
The Jacobian is

∇RX = I ⊗ (A− XC ) + (E − CX )T ⊗ I (n2 × n2 matrix)

Or rather,
∇RX (Y ) = (A− XC )Y + Y (E − XC ) (SYL)

We need ∇R−1
X : solve (SYL), costs O(n3) (but slow)
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Newton-like algorithms Newton’s algorithm

Structured Newton for (NT)

∇RX = (E − CX )T ⊗ In + In ⊗ (A− XC ) =

(DT ⊗ In + In ⊗∆)︸ ︷︷ ︸
diagonal n2 × n2

−
[
(e + XTq ⊗ In) In ⊗ (e + Xq)

]︸ ︷︷ ︸
n2 × 2n

[
qT ⊗ In
In ⊗ qT

]
︸ ︷︷ ︸

2n × n2

Sherman–Morrison–Woodbury formula

(D − UV )−1 = D−1 +D−1U(I2n − VD−1U)−1VD−1

We reduce to the inversion of R = I2n − VD−1U, 2n × 2n.

Moreover,

• R is Trummer-like (we can use GKO)

• R is well-conditioned
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Newton-like algorithms Relations between Newton and Lu

Relations between Newton and Lu

Lu: Invert ∇Fwk
Newton: Invert R = I2n − VkD−1U

∇Fwk
and R have the same structure. A deeper connection?

Theorem

Let uk , vk be the iterates of Lu, starting from u−1 = v−1 = 0, and Xk

be the iterates of Newton, starting from X0 = 0. Then,{
uk = Xkq + e

vk = XT
k q + e

∀k > 0

Interpretation Newton iterates are Cauchy-like:

∇∆,−DX (k+1) = uk+1v
T
k+1 − (uk+1 − uk)(vT

k+1 − vT
k )

Lu performs Newton’s iteration working on the generators.
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CR-like algorithms SDA

Structured doubling algorithm (SDA)

Structured doubling algorithm

Ek+1 = Ek(I − GkHk)
−1Ek ,

Fk+1 = Fk(I − HkGk)
−1Fk ,

Gk+1 = Gk + Ek(I − GkHk)
−1GkFk ,

Hk+1 = Hk + Fk(I − HkGk)
−1HkEk ,

(SDA)

1. Spectral transformation:

H =

[
E −C
B −A

]
7→ Hγ := (H+ γI )−1(H− γI )

2. Block UL factorization: Hγ = U−1
0 L0 con

U =

[
I −G0

0 F0

]
, L =

[
E0 0
−H0 I

]
3. Implicit update H2k

γ = U−1
k Lk
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CR-like algorithms SDA

Example
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CR-like algorithms SDA

Fast SDA for (NT)

H2k

γ =

[
I −Gk

0 Fk

]−1 [
Ek 0
−Hk I

]
Cauchy-like structure

DEk − EkD = (q + Gke)eTEk − Ekq(eT + qTHk),

∆Fk − Fk∆ = (Hkq + e)qTFk − Fke(eT + qTGk),

DGk + Gk∆ = (q + Gke)(eT + qTGk)− EkqqTFk ,

∆Hk + HkD = (Hkq + e)(eT + qTHk)− EkqqTFk ,

Instead of updating Ek , Fk , Gk , Hk ,

• update the above generators

• store and update the main diagonals of Ek , Fk
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CR-like algorithms Cyclic reduction

Cyclic reduction

NARE ⇔ eigenvalue problem

[
E −C
B −A

]
u = λu

Multiply the second block column by λ:([
E 0
B 0

]
+

[
−I −C
0 −A

]
λ +

[
0 0
0 −I

]
λ2

)
u = 0

yields a quadratic eigenvalue problem

Theorem

S solves the NARE ⇔
[
E − CS 0

S 0

]
solves the unilateral equation

[
E 0
B 0

]
+

[
−I −C
0 −A

]
X +

[
0 0
0 −I

]
X 2 = 0 (UNI)
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CR-like algorithms Cyclic reduction

Cyclic reduction – the classical algorithm

Cyclic reduction [Buzbee–Golub–Nielson, ’69]

A(k+1)
0 = A(k)

0 −A(k)
−1K

(k)A(k)
1 −A(k)

1 K(k)A(k)
−1, K(k) =

(
A(k)

0

)−1

,

A(k+1)
−1 = −A(k)

−1K
(k)A(k)

−1,

A(k+1)
1 = −A(k)

1 K(k)A(k)
1 ,

Â(k+1)
0 = Â(k)

0 −A(k)
1 K(k)A(k)

−1.

(CR)

With some assumptions, (CR) converges to the solution of
A−1 +A0X +A1X

2 = 0 with smaller eigenvalues (in modulus)

1. spectral transformation H 7→ I − tH (shrink-and-shift)

2. apply (CR) to (UNI)
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CR-like algorithms Cyclic reduction

Example
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CR-like algorithms Cyclic reduction

Fast cyclic reduction for (NT)

Cauchy-like structure

∇D,DA(k)
−1 =A(k)

−1

[
q
0

]
s
(k)
0 +A(k)

0

[
0
e

]
t
(k)
−1 + u0

[
eT , −qT

]
A(k)
−1,

∇D,DA(k)
0 =A(k)

−1

[
q
0

]
s
(k)
1 +A(k)

0

[
q
0

]
s
(k)
0 +A(k)

0

[
0
e

]
t
(k)
0

+A(k)
1

[
0
e

]
t
(k)
−1 + u0

[
eT , −qT

]
A(k)

0 ,

∇D,DA(k)
1 =A(k)

0

[
q
0

]
s
(k)
1 +A(k)

1

[
0
e

]
t
(k)
0 + u0

[
eT , −qT

]
A(k)

1 ,

Instead of updating A(k)
−1 , A(k)

0 , A(k)
1 ,

• update the above generators

• store and update the main diagonals of A(k)
−1 , A(k)

1
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CR-like algorithms Relations between SDA and CR

Relations between SDA and CR

Theorem

SDA is CR applied to a different reduction (not only for (NT)!)

1. Spectral transformation

H 7→ Hγ := (H+ γI )−1(H− γI ) =

[
I −G0

0 F0

]−1 [
E0 0
−H0 I

]
2. Reduction to a quadratic eigenvalue problem[

E0 0
−H0 I

]
u = λ

[
I −G0

0 F0

]
u

multiply the second block row by λ([
E0 0
0 0

]
+

[
−I G0

H0 −I

]
λ +

[
0 0
0 F0

]
λ2

)
u = 0 (SDA-U)

3. (CR) on the unilateral equation associated to (SDA-U)

Much freedom, plenty of room for improvements
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CR-like algorithms Relations between SDA and CR

A new algorithm
Only when X is a square matrix — (NT) is ok
Idea: in the reduction step, try to make H triangular

1. shrink-and-shift H → I − tH
2. conjugate to make the (1, 2) block nonsingular

H →
[
I M
0 I

]−1

H
[
I M
0 I

]
=

[
∗ −R(M)
∗ ∗

]
3. conjugate again to eliminate the (1, 1) block

H →
[

I 0
C−1D I

]−1

H
[

I 0
C−1D I

]
=

[
0 ∗
∗ ∗

]
4. A change of variables yields a n × n unilateral equation ⇒ CR.

Cheaper to solve, 38
3 n3/step instead of 64

3 n3 (SDA)

Similar approach in [Bini–Iannazzo, ’03]
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Experiments Numerical results

Numerical results – noncritical case
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Experiments Numerical results

Numerical results – quasi-critical case
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Experiments Conclusions

Results and research lines

• sLu is the faster algorithm for (NT)

• sSDA and sCR could be useful for diagonal + rank r

• Better understanding of the algorithms, unified proofs

• Meaningful results not only for (NT), but for any NARE

• Ideas for new algorithms

Thanks for your attention!
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