Exploiting displacement structure in the solution of a class of nonsymmetric algebraic Riccati equations

D. A. Bini B. Iannazzo B. Meini <u>F. Poloni</u>

Università di Pisa Scuola Normale Superiore, Pisa

2nd intl. conference on matrix methods and operator equations Moscow, 23 July 2007

Outline

Introduction to the problem

Algebraic Riccati equations Useful results

Newton-like algorithms

Lu's algorithm Newton's algorithm Relations between Newton and Lu

CR-like algorithms

SDA Cyclic reduction Relations between SDA and CR

Experiments

Numerical results Conclusions

F. Poloni (SNS, Univ. Pisa)

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

$$XCX - AX - XE + B = 0$$

 $A, B, C, E, X \in \mathbb{R}^{n \times n}$

(NARE)

Recent interest in the literature e.g. [Guo–Laub '00, Lu '05, Guo–Higham '05, Bini–Iannazzo–Latouche–Meini '06]

- 4 週 ト - 4 三 ト - 4 三 ト

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

$$XCX - AX - XE + B = 0$$

 $A, B, C, E, X \in \mathbb{R}^{n \times n}$

(NARE)

Recent interest in the literature e.g. [Guo–Laub '00, Lu '05, Guo–Higham '05, Bini–Iannazzo–Latouche–Meini '06]

$$\begin{array}{lll} X \text{ solves (NARE)} & \Leftrightarrow & \begin{bmatrix} E & -C \\ B & -A \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (E - CX) \\ & \text{Solutions} & \Leftrightarrow & \text{invariant subspaces of } \mathcal{H} := \begin{bmatrix} E & -C \\ B & -A \end{bmatrix} \end{array}$$

- Explicit calculation of the eigenvectors: numerical problems
- Iterative methods: cost $O(n^3)$ /step, quadratic convergence

F. Poloni (SNS, Univ. Pisa)

イロト イポト イヨト イヨト 二日

One-group neutron transport equation

$$\begin{cases} (\mu + \alpha) \frac{\partial}{\partial x} + 1 \\ \end{cases} \varphi(x, \mu) = \frac{c}{2} \int_{-1}^{1} \varphi(x, \omega) d\omega \\ \varphi(0, \mu) = f(\mu), \quad \mu > -\alpha, \quad |\mu| \leq 1, \\ \lim_{x \to \infty} \varphi(x, \mu) = 0. \end{cases}$$

Propagation of neutrons through a slab of shielding material

One-group neutron transport equation

$$\left\{(\mu+\alpha)\frac{\partial}{\partial x}+1\right\}\varphi(x,\mu)=\frac{c}{2}\int_{-1}^{1}\varphi(x,\omega)d\omega$$

∜

Reduction to kernel + Gaussian quadrature $\int_0^1 f(x) dx \approx \sum w_i f(x_i)$ \Downarrow

The resulting equation

$$\Delta X + XD = (Xq + e)(e^T + q^T X)$$
 (NT)

 D,Δ "positive" diagonals, e,q>0 vectors

(NT) is a NARE with rank structure:

$$A = \Delta - eq^T, B = ee^T, C = qq^T, E = D - qe^T$$

F. Poloni (SNS, Univ. Pisa)

Algorithms for NARE

- 1. Newton's method [C.H. Guo-Laub '00]
- 2. Newton applied to Lu's iteration [Lu '05] only for (NT)
- 3. Structured doubling algorithm [X.X. Guo-Lin-Xu '06]
- 4. Cyclic reduction [Ramaswami '99 and others]

All with cost $O(n^3)$ /step, quadratic convergence

Our results

- Structured versions for (NT), with cost $O(n^2)$ /step
- Shift technique [He-Meini-Rhee '01] in the structured algorithms
- Interesting connections: $1 = 2, 3 \subseteq 4$
- New variants to 4

F. Poloni (SNS, Univ. Pisa)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Riccati equations and *M*-matrices

Classical hypothesis — includes case (NT)

$$\mathcal{M} = \begin{bmatrix} E & -C \\ -B & A \end{bmatrix} \text{ is an } M\text{-matrix}$$

With this assumption,

•
$$\mathcal{H} = \begin{bmatrix} E & -C \\ B & -A \end{bmatrix}$$
 has:

n eigenvalues in the positive half-plane $\Re(\lambda)>0$

n in the negative half-plane

(eventually some on the border)

- Exists S minimal nonnegative solution
- $S \Leftrightarrow$ eigenvalues with $\Re(\lambda) > 0$
- The classical algorithms converge to S

< 回 ト < 三 ト < 三 ト

Example

- 一司

э

Cauchy-like matrices

Displacement operator

$$\nabla_{R,S}(X) := RX - XS$$

R, S diagonal matrices

Cauchy-like matrices: $\nabla_{R,S}(X)$ is low rank \Leftrightarrow

$$X_{ij} = rac{u_i \cdot v_j}{R_{ii} - S_{jj}}$$
 whenever $R_{ii}
eq S_{jj}$

 u_i , v_i (generators) are $1 \times r$, $r \times 1$ vectors

Usually one requires $R_{ii} \neq S_{jj}$ for all i, j

Instead, we will also need the case R = S (*Trummer-like*): nothing is known about the main diagonal of X

F. Poloni (SNS, Univ. Pisa)

イロト 不得下 イヨト イヨト

The GKO algorithm

Solving linear systems with Cauchy-like matrices: GKO algorithm [Gohberg–Kailath–Olshevsky '95]

During Gaussian elimination,

$$M \longrightarrow \begin{bmatrix} c_{11} & c_{12} \\ 0 & C \end{bmatrix} \text{ with } C \text{ Cauchy-like}$$

Instead of updating the elements of C (cost: $O(n^3)$), update its generators (cost: $O(n^2)$)

Trummer-like case is similar:

- Update the diagonal of C as in the traditional Gaussian elimination $O(n^2)$
- Update the other elements as in GKO $O(n^2)$

F. Poloni (SNS, Univ. Pisa)

Lu's algorithm

The resulting equation

$$\Delta X + XD = (Xq + e)(e^T + q^T X)$$
(NT)
Let $u := Xq + e, v^T := e^T + q^T X$

$$(NT) \Longleftrightarrow \nabla_{\Delta,-D}(X) = uv^T$$

X is Cauchy-like, and

$$\begin{cases} u = \nabla_{\Delta,-D}^{-1} (uv^T)q + e \\ v = \left(\nabla_{\Delta,-D}^{-1} (uv^T)\right)^T q + e \end{cases}$$
(LU)
Let $w := \begin{bmatrix} u \\ v \end{bmatrix}$; (LU) is $F(w) = 0$, solve with Newton's method
 $w_{k+1} = w_k - (\nabla F_{w_k})^{-1} F(w_k)$

The same in $O(n^2)$: ∇F is Trummer-like, use GKO

F. Poloni (SNS, Univ. Pisa)

< <>></>

3

Newton's algorithm

NARE

$$XCX - AX - XE + B = 0$$

Newton's method applied directly to R(X) = XCX - AX - XE + BThe Jacobian is

$$abla R_X = I \otimes (A - XC) + (E - CX)^T \otimes I \quad (n^2 \times n^2 \text{ matrix})$$

Or rather,

$$\nabla R_X(\mathbf{Y}) = (A - XC)\mathbf{Y} + \mathbf{Y}(E - XC)$$
(SYL)

We need ∇R_{χ}^{-1} : solve (SYL), costs $O(n^3)$ (but slow)

F. Poloni (SNS, Univ. Pisa)

イロン 不良 とくほう イヨン 二日

Structured Newton for (NT)

$$\nabla R_X = (E - CX)^T \otimes I_n + I_n \otimes (A - XC) = \underbrace{(D^T \otimes I_n + I_n \otimes \Delta)}_{\text{diagonal } n^2 \times n^2} - \underbrace{[(e + X^T q \otimes I_n) \quad I_n \otimes (e + Xq)]}_{n^2 \times 2n} \underbrace{\begin{bmatrix} q^T \otimes I_n \\ I_n \otimes q^T \end{bmatrix}}_{2n \times n^2}$$

Sherman-Morrison-Woodbury formula

$$(\mathcal{D} - \mathcal{U}\mathcal{V})^{-1} = \mathcal{D}^{-1} + \mathcal{D}^{-1}\mathcal{U}(\mathcal{I}_{2n} - \mathcal{V}\mathcal{D}^{-1}\mathcal{U})^{-1}\mathcal{V}\mathcal{D}^{-1}$$

We reduce to the inversion of $\mathcal{R} = I_{2n} - V \mathcal{D}^{-1} U$, $2n \times 2n$.

Moreover,

- \mathcal{R} is Trummer-like (we can use GKO)
- *R* is well-conditioned

F. Poloni (SNS, Univ. Pisa)

Relations between Newton and Lu

Lu: Invert ∇F_{w_k} Newton: Invert $\mathcal{R} = I_{2n} - V_k \mathcal{D}^{-1} U$

 ∇F_{w_k} and \mathcal{R} have the same structure. A deeper connection?

Theorem

Let u_k , v_k be the iterates of Lu, starting from $u_{-1} = v_{-1} = 0$, and X_k be the iterates of Newton, starting from $X_0 = 0$. Then,

$$\begin{cases} u_k = X_k q + e \\ v_k = X_k^T q + e \end{cases} \quad \forall k \ge 0$$

Interpretation Newton iterates are Cauchy-like:

$$\nabla_{\Delta,-D} X^{(k+1)} = u_{k+1} v_{k+1}^{T} - (u_{k+1} - u_{k}) (v_{k+1}^{T} - v_{k}^{T})$$

Lu performs Newton's iteration working on the generators.

F. Poloni (SNS, Univ. Pisa)

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

Structured doubling algorithm (SDA)

Structured doubling algorithm

$$E_{k+1} = E_k (I - G_k H_k)^{-1} E_k,$$

$$F_{k+1} = F_k (I - H_k G_k)^{-1} F_k,$$

$$G_{k+1} = G_k + E_k (I - G_k H_k)^{-1} G_k F_k,$$

$$H_{k+1} = H_k + F_k (I - H_k G_k)^{-1} H_k E_k,$$

(SDA)

1. Spectral transformation:

$$\mathcal{H} = \begin{bmatrix} \mathsf{E} & -\mathsf{C} \\ \mathsf{B} & -\mathsf{A} \end{bmatrix} \mapsto \mathcal{H}_{\gamma} := (\mathcal{H} + \gamma I)^{-1} (\mathcal{H} - \gamma I)$$

2. Block UL factorization: $\mathcal{H}_{\gamma} = \mathcal{U}_0^{-1} \mathcal{L}_0$ con

$$\mathcal{U} = \begin{bmatrix} I & -G_0 \\ 0 & F_0 \end{bmatrix}, \quad \mathcal{L} = \begin{bmatrix} E_0 & 0 \\ -H_0 & I \end{bmatrix}$$

3. Implicit update $\mathcal{H}_{\gamma}^{2^{k}} = \mathcal{U}_{k}^{-1}\mathcal{L}_{k}$

(日) (四) (王) (王) (王)

Example

F. Poloni (SNS, Univ. Pisa)

NAREs with rank structure

→ ∃ → Moscow, 23 July 2007 15 / 25

3

Fast SDA for (NT)

$$\mathcal{H}_{\gamma}^{2^{k}} = egin{bmatrix} I & -G_{k} \\ 0 & F_{k} \end{bmatrix}^{-1} egin{bmatrix} E_{k} & 0 \\ -H_{k} & I \end{bmatrix}$$

Cauchy-like structure

$$DE_k - E_k D = (q + G_k e)e^T E_k - E_k q(e^T + q^T H_k),$$

$$\Delta F_k - F_k \Delta = (H_k q + e)q^T F_k - F_k e(e^T + q^T G_k),$$

$$DG_k + G_k \Delta = (q + G_k e)(e^T + q^T G_k) - E_k qq^T F_k,$$

$$\Delta H_k + H_k D = (H_k q + e)(e^T + q^T H_k) - E_k qq^T F_k,$$

Instead of updating E_k , F_k , G_k , H_k ,

- update the above generators
- store and update the main diagonals of E_k , F_k

F. Poloni (SNS, Univ. Pisa)

NAREs with rank structure

- 32

イロト イポト イヨト イヨト

Cyclic reduction

NARE \Leftrightarrow eigenvalue problem $\begin{bmatrix} E & -C \\ B & -A \end{bmatrix} u = \lambda u$ Multiply the second block column by λ :

$$\left(\begin{bmatrix} E & 0 \\ B & 0 \end{bmatrix} + \begin{bmatrix} -I & -C \\ 0 & -A \end{bmatrix} \lambda + \begin{bmatrix} 0 & 0 \\ 0 & -I \end{bmatrix} \lambda^2 \right) u = 0$$

yields a quadratic eigenvalue problem

Theorem

S solves the NARE
$$\Leftrightarrow \begin{bmatrix} E - CS & 0 \\ S & 0 \end{bmatrix}$$
 solves the unilateral equation
$$\begin{bmatrix} E & 0 \\ B & 0 \end{bmatrix} + \begin{bmatrix} -I & -C \\ 0 & -A \end{bmatrix} X + \begin{bmatrix} 0 & 0 \\ 0 & -I \end{bmatrix} X^{2} = 0$$
(UNI)

F. Poloni (SNS, Univ. Pisa)

Cyclic reduction – the classical algorithm

Cyclic reduction [Buzbee-Golub-Nielson, '69]

$$\begin{aligned} \mathcal{A}_{0}^{(k+1)} &= \mathcal{A}_{0}^{(k)} - \mathcal{A}_{-1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{1}^{(k)} - \mathcal{A}_{1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{-1}^{(k)}, \quad \mathcal{K}^{(k)} &= \left(\mathcal{A}_{0}^{(k)}\right)^{-1}, \\ \mathcal{A}_{-1}^{(k+1)} &= -\mathcal{A}_{-1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{-1}^{(k)}, \\ \mathcal{A}_{1}^{(k+1)} &= -\mathcal{A}_{1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{1}^{(k)}, \\ \widehat{\mathcal{A}}_{0}^{(k+1)} &= \widehat{\mathcal{A}}_{0}^{(k)} - \mathcal{A}_{1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{-1}^{(k)}. \end{aligned}$$
(CR)

With some assumptions, (CR) converges to the solution of $A_{-1} + A_0X + A_1X^2 = 0$ with smaller eigenvalues (in modulus)

- 1. spectral transformation $\mathcal{H} \mapsto I t\mathcal{H}$ (shrink-and-shift)
- 2. apply (CR) to (UNI)

F. Poloni (SNS, Univ. Pisa)

イロン 不良 とくほう イヨン 二日

Example

F. Poloni (SNS, Univ. Pisa)

NAREs with rank structure

Moscow, 23 July 2007 19 / 25

Fast cyclic reduction for (NT)

Cauchy-like structure

$$\begin{split} \nabla_{\mathcal{D},\mathcal{D}}\mathcal{A}_{-1}^{(k)} = & \mathcal{A}_{-1}^{(k)} \begin{bmatrix} q \\ 0 \end{bmatrix} s_{0}^{(k)} + \mathcal{A}_{0}^{(k)} \begin{bmatrix} 0 \\ e \end{bmatrix} t_{-1}^{(k)} + u_{0} \begin{bmatrix} e^{T}, -q^{T} \end{bmatrix} \mathcal{A}_{-1}^{(k)}, \\ \nabla_{\mathcal{D},\mathcal{D}}\mathcal{A}_{0}^{(k)} = & \mathcal{A}_{-1}^{(k)} \begin{bmatrix} q \\ 0 \end{bmatrix} s_{1}^{(k)} + \mathcal{A}_{0}^{(k)} \begin{bmatrix} q \\ 0 \end{bmatrix} s_{0}^{(k)} + \mathcal{A}_{0}^{(k)} \begin{bmatrix} 0 \\ e \end{bmatrix} t_{0}^{(k)} \\ & + \mathcal{A}_{1}^{(k)} \begin{bmatrix} 0 \\ e \end{bmatrix} t_{-1}^{(k)} + u_{0} \begin{bmatrix} e^{T}, -q^{T} \end{bmatrix} \mathcal{A}_{0}^{(k)}, \\ \nabla_{\mathcal{D},\mathcal{D}}\mathcal{A}_{1}^{(k)} = & \mathcal{A}_{0}^{(k)} \begin{bmatrix} q \\ 0 \end{bmatrix} s_{1}^{(k)} + \mathcal{A}_{1}^{(k)} \begin{bmatrix} 0 \\ e \end{bmatrix} t_{0}^{(k)} + u_{0} \begin{bmatrix} e^{T}, -q^{T} \end{bmatrix} \mathcal{A}_{0}^{(k)}, \end{split}$$

Instead of updating $\mathcal{A}_{-1}^{(k)}$, $\mathcal{A}_{0}^{(k)}$, $\mathcal{A}_{1}^{(k)}$,

- update the above generators
- store and update the main diagonals of $\mathcal{A}_{-1}^{(k)}$, $\mathcal{A}_{1}^{(k)}$

F. Poloni (SNS, Univ. Pisa)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Relations between SDA and CR

Theorem

SDA is CR applied to a different reduction (not only for (NT)!)

1. Spectral transformation

$$\mathcal{H} \mapsto \mathcal{H}_{\gamma} := (\mathcal{H} + \gamma I)^{-1} (\mathcal{H} - \gamma I) = \begin{bmatrix} I & -G_0 \\ 0 & F_0 \end{bmatrix}^{-1} \begin{bmatrix} E_0 & 0 \\ -H_0 & I \end{bmatrix}$$

2. Reduction to a quadratic eigenvalue problem

$$\begin{bmatrix} E_0 & 0 \\ -H_0 & I \end{bmatrix} u = \lambda \begin{bmatrix} I & -G_0 \\ 0 & F_0 \end{bmatrix} u$$

multiply the second block row by $\boldsymbol{\lambda}$

$$\left(\begin{bmatrix} E_0 & 0\\ 0 & 0\end{bmatrix} + \begin{bmatrix} -I & G_0\\ H_0 & -I \end{bmatrix} \lambda + \begin{bmatrix} 0 & 0\\ 0 & F_0 \end{bmatrix} \lambda^2\right) u = 0 \qquad (SDA-U)$$

21 / 25

3. (CR) on the unilateral equation associated to (SDA-U) Much freedom, plenty of room for improvements F. Poloni (SNS, Univ. Pisa) NAREs with rank structure Moscow, 23 July 2007

A new algorithm

Only when X is a square matrix — (NT) is ok Idea: in the reduction step, try to make \mathcal{H} triangular

- 1. shrink-and-shift $\mathcal{H} \to I t\mathcal{H}$
- 2. conjugate to make the (1,2) block nonsingular

$$\mathcal{H} \to \begin{bmatrix} I & M \\ 0 & I \end{bmatrix}^{-1} \mathcal{H} \begin{bmatrix} I & M \\ 0 & I \end{bmatrix} = \begin{bmatrix} * & -R(M) \\ * & * \end{bmatrix}$$

3. conjugate again to eliminate the (1,1) block

$$\mathcal{H} \to \begin{bmatrix} I & 0 \\ C^{-1}D & I \end{bmatrix}^{-1} \mathcal{H} \begin{bmatrix} I & 0 \\ C^{-1}D & I \end{bmatrix} = \begin{bmatrix} 0 & * \\ * & * \end{bmatrix}$$

4. A change of variables yields a $n \times n$ unilateral equation \Rightarrow CR. Cheaper to solve, $\frac{38}{3}n^3$ /step instead of $\frac{64}{3}n^3$ (SDA) Similar approach in [Bini–Iannazzo, '03] F. Poloni (SNS, Univ. Pisa)

Numerical results - noncritical case

F. Poloni (SNS, Univ. Pisa)

NAREs with rank structure

Moscow, 23 July 2007 23 / 25

Numerical results - quasi-critical case

F. Poloni (SNS, Univ. Pisa)

NAREs with rank structure

Moscow, 23 July 2007 24 / 25

Results and research lines

- **sLu** is the faster algorithm for (NT)
- **sSDA** and **sCR** could be useful for diagonal + rank r
- Better understanding of the algorithms, unified proofs
- Meaningful results not only for (NT), but for any NARE
- Ideas for new algorithms

Results and research lines

- **sLu** is the faster algorithm for (NT)
- **sSDA** and **sCR** could be useful for diagonal + rank r
- Better understanding of the algorithms, unified proofs
- Meaningful results not only for (NT), but for any NARE
- Ideas for new algorithms

Thanks for your attention!

F. Poloni (SNS, Univ. Pisa)