Exploiting displacement structure in the solution of a class of nonsymmetric algebraic Riccati equations

D. A. Bini
$\begin{array}{ll}\text { B. Iannazzo } & \text { B. Meini F. Poloni }\end{array}$

Università di Pisa
Scuola Normale Superiore, Pisa
2nd intl. conference on matrix methods and operator equations Moscow, 23 July 2007

Outline

Introduction to the problem
Algebraic Riccati equations
Useful results
Newton-like algorithms
Lu's algorithm
Newton's algorithm
Relations between Newton and Lu
CR-like algorithms
SDA
Cyclic reduction
Relations between SDA and CR
Experiments
Numerical results
Conclusions

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

$$
\begin{array}{r}
X C X-A X-X E+B=0 \\
A, B, C, E, X \in \mathbb{R}^{n \times n}
\end{array}
$$

(NARE)

Recent interest in the literature e.g. [Guo-Laub '00, Lu '05, Guo-Higham '05, Bini-lannazzo-Latouche-Meini '06]

Algebraic Riccati equations

Nonsymmetric algebraic Riccati equation (NARE)

$$
\begin{array}{r}
X C X-A X-X E+B=0 \\
A, B, C, E, X \in \mathbb{R}^{n \times n} \tag{NARE}
\end{array}
$$

Recent interest in the literature e.g. [Guo-Laub '00, Lu '05, Guo-Higham '05, Bini-lannazzo-Latouche-Meini '06]
X solves (NARE) $\Leftrightarrow\left[\begin{array}{ll}E & -C \\ B & -A\end{array}\right]\left[\begin{array}{l}I \\ X\end{array}\right]=\left[\begin{array}{c}I \\ X\end{array}\right](E-C X)$

$$
\text { Solutions } \Leftrightarrow \quad \text { invariant subspaces of } \mathcal{H}:=\left[\begin{array}{ll}
E & -C \\
B & -A
\end{array}\right]
$$

- Explicit calculation of the eigenvectors: numerical problems
- Iterative methods: cost $O\left(n^{3}\right) /$ step, quadratic convergence

One-group neutron transport equation

$$
\begin{gathered}
\left\{(\mu+\alpha) \frac{\partial}{\partial x}+1\right\} \varphi(x, \mu)=\frac{c}{2} \int_{-1}^{1} \varphi(x, \omega) d \omega \\
\varphi(0, \mu)=f(\mu), \quad \mu>-\alpha, \quad|\mu| \leqslant 1, \\
\lim _{x \rightarrow \infty} \varphi(x, \mu)=0 .
\end{gathered}
$$

Propagation of neutrons through a slab of shielding material

One-group neutron transport equation

$$
\begin{gathered}
\left\{(\mu+\alpha) \frac{\partial}{\partial x}+1\right\} \varphi(x, \mu)=\frac{c}{2} \int_{-1}^{1} \varphi(x, \omega) d \omega \\
\Downarrow
\end{gathered}
$$

Reduction to kernel + Gaussian quadrature $\int_{0}^{1} f(x) d x \approx \sum w_{i} f\left(x_{i}\right)$

The resulting equation

$$
\begin{equation*}
\Delta X+X D=(X q+e)\left(e^{T}+q^{T} X\right) \tag{NT}
\end{equation*}
$$

D, Δ "positive" diagonals, $e, q>0$ vectors
(NT) is a NARE with rank structure:

$$
A=\Delta-e q^{T}, B=e e^{T}, C=q q^{T}, E=D-q e^{T}
$$

Algorithms for NARE

1. Newton's method [C.H. Guo-Laub '00]
2. Newton applied to Lu's iteration [Lu '05] — only for (NT)
3. Structured doubling algorithm [X.X. Guo-Lin-Xu '06]
4. Cyclic reduction [Ramaswami '99 and others]

All with cost $O\left(n^{3}\right) /$ step, quadratic convergence

Our results

- Structured versions for (NT), with cost $O\left(n^{2}\right) /$ step
- Shift technique [He-Meini-Rhee '01] in the structured algorithms
- Interesting connections: $1=2,3 \subseteq 4$
- New variants to 4

Riccati equations and M-matrices

Classical hypothesis - includes case (NT)
$\mathcal{M}=\left[\begin{array}{cc}E & -C \\ -B & A\end{array}\right]$ is an M-matrix
With this assumption,

- $\mathcal{H}=\left[\begin{array}{ll}E & -C \\ B & -A\end{array}\right]$ has:
n eigenvalues in the positive half-plane $\Re(\lambda)>0$
n in the negative half-plane
(eventually some on the border)
- Exists S minimal nonnegative solution
- $S \Leftrightarrow$ eigenvalues with $\Re(\lambda)>0$
- The classical algorithms converge to S

Example

Cauchy-like matrices

Displacement operator

$$
\nabla_{R, S}(X):=R X-X S
$$

R, S diagonal matrices
Cauchy-like matrices: $\nabla_{R, S}(X)$ is low rank \Leftrightarrow

$$
X_{i j}=\frac{u_{i} \cdot v_{j}}{R_{i i}-S_{j j}} \quad \text { whenever } R_{i i} \neq S_{j j}
$$

u_{i}, v_{j} (generators) are $1 \times r, r \times 1$ vectors
Usually one requires $R_{i i} \neq S_{j j}$ for all i, j
Instead, we will also need the case $R=S$ (Trummer-like):
nothing is known about the main diagonal of X

The GKO algorithm

Solving linear systems with Cauchy-like matrices: GKO algorithm [Gohberg-Kailath-Olshevsky '95]

During Gaussian elimination,

$$
M \longrightarrow\left[\begin{array}{cc}
c_{11} & c_{12} \\
0 & C
\end{array}\right] \text { with C Cauchy-like }
$$

Instead of updating the elements of C (cost: $O\left(n^{3}\right)$), update its generators (cost: $O\left(n^{2}\right)$)

Trummer-like case is similar:

- Update the diagonal of C as in the traditional Gaussian elimination $O\left(n^{2}\right)$
- Update the other elements as in GKO $O\left(n^{2}\right)$

Lu's algorithm

The resulting equation

$$
\begin{equation*}
\Delta X+X D=(X q+e)\left(e^{T}+q^{T} X\right) \tag{NT}
\end{equation*}
$$

Let $u:=X q+e, v^{T}:=e^{T}+q^{T} X$

$$
(N T) \Longleftrightarrow \nabla_{\Delta,-D}(X)=u v^{T}
$$

X is Cauchy-like, and

$$
\left\{\begin{array}{l}
u=\nabla_{\Delta,-D}^{-1}\left(u v^{T}\right) q+e \tag{LU}\\
v=\left(\nabla_{\Delta,-D}^{-1}\left(u v^{T}\right)\right)^{T} q+e
\end{array}\right.
$$

Let $w:=\left[\begin{array}{l}u \\ v\end{array}\right] ;(\mathrm{LU})$ is $F(w)=0$, solve with Newton's method

$$
w_{k+1}=w_{k}-\left(\nabla F_{w_{k}}\right)^{-1} F\left(w_{k}\right)
$$

The same in $O\left(n^{2}\right): \nabla F$ is Trummer-like, use GKO

Newton's algorithm

NARE

$$
X C X-A X-X E+B=0
$$

Newton's method applied directly to $R(X)=X C X-A X-X E+B$ The Jacobian is

$$
\nabla R_{X}=I \otimes(A-X C)+(E-C X)^{T} \otimes I \quad\left(n^{2} \times n^{2} \text { matrix }\right)
$$

Or rather,

$$
\begin{equation*}
\nabla R_{X}(Y)=(A-X C) Y+Y(E-X C) \tag{SYL}
\end{equation*}
$$

We need ∇R_{X}^{-1} : solve (SYL), costs $O\left(n^{3}\right)$ (but slow)

Structured Newton for (NT)

$$
\begin{aligned}
& \nabla R_{X}=(E-C X)^{T} \otimes I_{n}+I_{n} \otimes(A-X C)= \\
& \underbrace{\left(D^{T} \otimes I_{n}+I_{n} \otimes \Delta\right)}_{\text {diagonal } n^{2} \times n^{2}}-\underbrace{\left[\left(e+X^{T} q \otimes I_{n}\right) I_{n} \otimes(e+X q)\right]}_{n^{2} \times 2 n} \underbrace{\left[\begin{array}{c}
q^{T} \otimes I_{n} \\
I_{n} \otimes q^{T}
\end{array}\right]}_{2 n \times n^{2}}
\end{aligned}
$$

Sherman-Morrison-Woodbury formula

$$
(\mathcal{D}-U V)^{-1}=\mathcal{D}^{-1}+\mathcal{D}^{-1} U\left(I_{2 n}-V \mathcal{D}^{-1} U\right)^{-1} V \mathcal{D}^{-1}
$$

We reduce to the inversion of $\mathcal{R}=I_{2 n}-V \mathcal{D}^{-1} U, 2 n \times 2 n$.
Moreover,

- \mathcal{R} is Trummer-like (we can use GKO)
- \mathcal{R} is well-conditioned

Relations between Newton and Lu

Lu: Invert $\nabla F_{w_{k}} \quad$ Newton: Invert $\mathcal{R}=I_{2 n}-V_{k} \mathcal{D}^{-1} U$
$\nabla F_{w_{k}}$ and \mathcal{R} have the same structure. A deeper connection?

Theorem

Let u_{k}, v_{k} be the iterates of $L u$, starting from $u_{-1}=v_{-1}=0$, and X_{k} be the iterates of Newton, starting from $X_{0}=0$. Then,

$$
\left\{\begin{array}{l}
u_{k}=X_{k} q+e \\
v_{k}=X_{k}^{T} q+e
\end{array} \quad \forall k \geqslant 0\right.
$$

Interpretation Newton iterates are Cauchy-like:

$$
\nabla_{\Delta,-D} X^{(k+1)}=u_{k+1} v_{k+1}^{\top}-\left(u_{k+1}-u_{k}\right)\left(v_{k+1}^{T}-v_{k}^{T}\right)
$$

Lu performs Newton's iteration working on the generators.

Structured doubling algorithm (SDA)

Structured doubling algorithm

$$
\begin{align*}
E_{k+1} & =E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k}, \\
F_{k+1} & =F_{k}\left(I-H_{k} G_{k}\right)^{-1} F_{k}, \\
G_{k+1} & =G_{k}+E_{k}\left(I-G_{k} H_{k}\right)^{-1} G_{k} F_{k}, \tag{SDA}\\
H_{k+1} & =H_{k}+F_{k}\left(I-H_{k} G_{k}\right)^{-1} H_{k} E_{k},
\end{align*}
$$

1. Spectral transformation:

$$
\mathcal{H}=\left[\begin{array}{ll}
E & -C \\
B & -A
\end{array}\right] \mapsto \mathcal{H}_{\gamma}:=(\mathcal{H}+\gamma I)^{-1}(\mathcal{H}-\gamma I)
$$

2. Block $U L$ factorization: $\mathcal{H}_{\gamma}=\mathcal{U}_{0}^{-1} \mathcal{L}_{0}$ con

$$
\mathcal{U}=\left[\begin{array}{cc}
I & -G_{0} \\
0 & F_{0}
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{cc}
E_{0} & 0 \\
-H_{0} & I
\end{array}\right]
$$

3. Implicit update $\mathcal{H}_{\gamma}^{2^{k}}=\mathcal{U}_{k}^{-1} \mathcal{L}_{k}$

Example

Eigenvalues of \mathcal{H}

Eigenvalues of $\mathcal{H}_{\gamma}=$ $(\mathcal{H}+\gamma I)^{-1}(\mathcal{H}-\gamma I)$

Fast SDA for (NT)

$$
\mathcal{H}_{\gamma}^{2^{k}}=\left[\begin{array}{cc}
I & -G_{k} \\
0 & F_{k}
\end{array}\right]^{-1}\left[\begin{array}{cc}
E_{k} & 0 \\
-H_{k} & I
\end{array}\right]
$$

Cauchy-like structure

$$
\begin{aligned}
D E_{k}-E_{k} D & =\left(q+G_{k} e\right) e^{T} E_{k}-E_{k} q\left(e^{T}+q^{\top} H_{k}\right), \\
\Delta F_{k}-F_{k} \Delta & =\left(H_{k} q+e\right) q^{T} F_{k}-F_{k} e\left(e^{T}+q^{T} G_{k}\right), \\
D G_{k}+G_{k} \Delta & =\left(q+G_{k} e\right)\left(e^{T}+q^{T} G_{k}\right)-E_{k} q q^{T} F_{k}, \\
\Delta H_{k}+H_{k} D & =\left(H_{k} q+e\right)\left(e^{T}+q^{T} H_{k}\right)-E_{k} q q^{T} F_{k},
\end{aligned}
$$

Instead of updating $E_{k}, F_{k}, G_{k}, H_{k}$,

- update the above generators
- store and update the main diagonals of E_{k}, F_{k}

Cyclic reduction

NARE \Leftrightarrow eigenvalue problem $\left[\begin{array}{ll}E & -C \\ B & -A\end{array}\right] u=\lambda u$
Multiply the second block column by λ :

$$
\left(\left[\begin{array}{ll}
E & 0 \\
B & 0
\end{array}\right]+\left[\begin{array}{cc}
-I & -C \\
0 & -A
\end{array}\right] \lambda+\left[\begin{array}{cc}
0 & 0 \\
0 & -I
\end{array}\right] \lambda^{2}\right) u=0
$$

yields a quadratic eigenvalue problem
Theorem
S solves the NARE $\Leftrightarrow\left[\begin{array}{cc}E-C S & 0 \\ S & 0\end{array}\right]$ solves the unilateral equation

$$
\left[\begin{array}{ll}
E & 0 \tag{UNI}\\
B & 0
\end{array}\right]+\left[\begin{array}{cc}
-1 & -C \\
0 & -A
\end{array}\right] X+\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right] X^{2}=0
$$

Cyclic reduction - the classical algorithm

Cyclic reduction [Buzbee-Golub-Nielson, '69]

$$
\begin{align*}
& \mathcal{A}_{0}^{(k+1)}=\mathcal{A}_{0}^{(k)}-\mathcal{A}_{-1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{1}^{(k)}-\mathcal{A}_{1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{-1}^{(k)}, \quad \mathcal{K}^{(k)}=\left(\mathcal{A}_{0}^{(k)}\right)^{-1}, \\
& \mathcal{A}_{-1}^{(k+1)}=-\mathcal{A}_{-1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{-1}^{(k)}, \tag{CR}\\
& \mathcal{A}_{1}^{(k+1)}=-\mathcal{A}_{1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{1}^{(k)}, \\
& \widehat{\mathcal{A}}_{0}^{(k+1)}=\widehat{\mathcal{A}}_{0}^{(k)}-\mathcal{A}_{1}^{(k)} \mathcal{K}^{(k)} \mathcal{A}_{-1}^{(k)} .
\end{align*}
$$

With some assumptions, (CR) converges to the solution of $\mathcal{A}_{-1}+\mathcal{A}_{0} X+\mathcal{A}_{1} X^{2}=0$ with smaller eigenvalues (in modulus)

1. spectral transformation $\mathcal{H} \mapsto I-t \mathcal{H}$ (shrink-and-shift)
2. apply (CR) to (UNI)

Example

Eigenvalues of \mathcal{H}

Eigenvalues of $I-t \mathcal{H}$

Fast cyclic reduction for (NT)

Cauchy-like structure

$$
\begin{aligned}
& \nabla_{\mathcal{D}, \mathcal{D}} \mathcal{A}_{-1}^{(k)}= \mathcal{A}_{-1}^{(k)}\left[\begin{array}{l}
q \\
0
\end{array}\right] s_{0}^{(k)}+\mathcal{A}_{0}^{(k)}\left[\begin{array}{l}
0 \\
e
\end{array}\right] t_{-1}^{(k)}+u_{0}\left[e^{T},-q^{T}\right] \mathcal{A}_{-1}^{(k)}, \\
& \nabla_{\mathcal{D}, \mathcal{D}} \mathcal{A}_{0}^{(k)}= \mathcal{A}_{-1}^{(k)}\left[\begin{array}{l}
q \\
0
\end{array}\right] s_{1}^{(k)}+\mathcal{A}_{0}^{(k)}\left[\begin{array}{l}
q \\
0
\end{array}\right] s_{0}^{(k)}+\mathcal{A}_{0}^{(k)}\left[\begin{array}{l}
0 \\
e
\end{array}\right] t_{0}^{(k)} \\
&+\mathcal{A}_{1}^{(k)}\left[\begin{array}{l}
0 \\
e
\end{array}\right] t_{-1}^{(k)}+u_{0}\left[e^{T},-q^{T}\right] \mathcal{A}_{0}^{(k)}, \\
& \nabla_{\mathcal{D}, \mathcal{D}} \mathcal{A}_{1}^{(k)}=\mathcal{A}_{0}^{(k)}\left[\begin{array}{l}
q \\
0
\end{array}\right] s_{1}^{(k)}+\mathcal{A}_{1}^{(k)}\left[\begin{array}{l}
0 \\
e
\end{array}\right] t_{0}^{(k)}+u_{0}\left[e^{T},-q^{T}\right] \mathcal{A}_{1}^{(k)},
\end{aligned}
$$

Instead of updating $\mathcal{A}_{-1}^{(k)}, \mathcal{A}_{0}^{(k)}, \mathcal{A}_{1}^{(k)}$,

- update the above generators
- store and update the main diagonals of $\mathcal{A}_{-1}^{(k)}, \mathcal{A}_{1}^{(k)}$

Relations between SDA and CR

Theorem

SDA is CR applied to a different reduction (not only for (NT)!)

1. Spectral transformation

$$
\mathcal{H} \mapsto \mathcal{H}_{\gamma}:=(\mathcal{H}+\gamma I)^{-1}(\mathcal{H}-\gamma I)=\left[\begin{array}{cc}
I & -G_{0} \\
0 & F_{0}
\end{array}\right]^{-1}\left[\begin{array}{cc}
E_{0} & 0 \\
-H_{0} & I
\end{array}\right]
$$

2. Reduction to a quadratic eigenvalue problem

$$
\left[\begin{array}{cc}
E_{0} & 0 \\
-H_{0} & I
\end{array}\right] u=\lambda\left[\begin{array}{cc}
I & -G_{0} \\
0 & F_{0}
\end{array}\right] u
$$

multiply the second block row by λ

$$
\left(\left[\begin{array}{cc}
E_{0} & 0 \tag{SDA-U}\\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
-I & G_{0} \\
H_{0} & -I
\end{array}\right] \lambda+\left[\begin{array}{cc}
0 & 0 \\
0 & F_{0}
\end{array}\right] \lambda^{2}\right) u=0
$$

3. (CR) on the unilateral equation associated to (SDA-U)

Much freedom, plenty of room for improvements

A new algorithm

Only when X is a square matrix - (NT) is ok Idea: in the reduction step, try to make \mathcal{H} triangular

1. shrink-and-shift $\mathcal{H} \rightarrow I-t \mathcal{H}$
2. conjugate to make the $(1,2)$ block nonsingular

$$
\mathcal{H} \rightarrow\left[\begin{array}{cc}
l & M \\
0 & I
\end{array}\right]^{-1} \mathcal{H}\left[\begin{array}{cc}
l & M \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
* & -R(M) \\
* & *
\end{array}\right]
$$

3. conjugate again to eliminate the $(1,1)$ block

$$
\mathcal{H} \rightarrow\left[\begin{array}{cc}
I & 0 \\
C^{-1} D & I
\end{array}\right]^{-1} \mathcal{H}\left[\begin{array}{cc}
I & 0 \\
C^{-1} D & I
\end{array}\right]=\left[\begin{array}{ll}
0 & * \\
* & *
\end{array}\right]
$$

4. A change of variables yields a $n \times n$ unilateral equation $\Rightarrow C R$.

Cheaper to solve, $\frac{38}{3} n^{3} /$ step instead of $\frac{64}{3} n^{3}$ (SDA)
Similar approach in [Bini-lannazzo, '03]

Numerical results - noncritical case

Numerical results - quasi-critical case

Total time, alpha=1.E-8, $c=1-1 . E-6$

Relative residual

Results and research lines

- sLu is the faster algorithm for (NT)
- sSDA and sCR could be useful for diagonal + rank r
- Better understanding of the algorithms, unified proofs
- Meaningful results not only for (NT), but for any NARE
- Ideas for new algorithms

Results and research lines

- sLu is the faster algorithm for (NT)
- sSDA and sCR could be useful for diagonal + rank r
- Better understanding of the algorithms, unified proofs
- Meaningful results not only for (NT), but for any NARE
- Ideas for new algorithms

Thanks for your attention!

