
Two numerical methods for the solution
of Lur’e equations

Federico Poloni1 Timo Reis2

1Technische Universität Berlin, Institut für Mathematik
Supported by a postdoctoral grant of the Alexander von Humboldt Foundation

2Technische Universität Hamburg–Harburg, Institut für Numerische Simulation

International conference on Matrix Methods in Mathematics and
Applications

Moscow, 22–25 June 2011

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 1 / 1



Control problems and even matrix pencils

(Continous-time) control problems can be naturally expressed as deflating
subspace problems for

Even matrix pencils

A− sE =

 0 A− sI B
A∗ + sI Q S

B∗ S∗ R

 A, E ∈ Rn+n+m,n+n+m

A− sE is even, i.e., A = A∗, E = −E∗

We are looking for a maximal E-neutral deflating subspace, i.e.,

AU =V Â EU =V Ê U,V ∈C2n+m,k U∗EU =0

Moreover, Â − s Ê semi-stable (or semi-unstable).

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 2 / 1



From control problems to Riccati equations (sometimes)

When R nonsingular, eliminate the last block =⇒ invariant subspace
problem for a Hamiltonian matrix[

AR −GR
−QR −A∗R

]
− sI =

[
A− BR−1S∗ −BR−1B∗
−Q + SR−1S∗ −(A− BR−1S∗)∗

]
− sI

Associated to an algebraic Riccati equation via[
AR −GR
−QR −A∗R

] [
I
X

]
=

[
I
X

]
M M =AR − GRX

E-neutrality condition becomes simplecticity (i.e., X = X ∗, in this form)

Question
What if R is singular?

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 3 / 1



What if R is singular?
The singular R case has been treated stepmotherly (T. Reis)

numerical problems: nontrivial Jordan blocks at infinity and/or
singular pencil
the Riccati equation cannot be formed
in engineering practice, often solved by perturbing+inverting R

ARE must be replaced by a system

Lur’e equations

AT X + XA + Q =Y T Y
XB + S =Y T Z

R =ZT Z

(only X needed in practice)

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 4 / 1



Lur’e equations and deflating subspaces

Deflating subspace formulation

 0 −sI + A B
sI + A∗ Q S

B∗ S∗ R


X 0

In 0
0 Im

 =

 In 0
−X Y ∗
0 Z ∗

 [
−sI + A B

Y Z

]

Since E =

 0 In 0
−In 0 0
0 0 0

, ker E =

 0
0
Im

 contains the eigenvectors at ∞

When R is singular, some of them start nontrivial Jordan chains
the other vectors in the chains aren’t as easy to find

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 5 / 1



Even Kronecker canonical form

Even Kronecker canonical form [Thompson, ’76 & ’91] , a powerful tool to
analyze Lur’e equations theoretically [Reis, ’11]

Canonical form under transformations of the kind MTAM, MTEM
(for any M nonsingular)

Plays well with
deflating subspaces MT (A− sE)M M−1U = MT V (Â − Ê)

E-neutrality UT M−T MTEM M−1U = 0 (and similar relations)

Even Kronecker canonical form [Thompson, ’76 & ’91]

Every even matrix pencil (i.e., A = A∗, E = −E∗) can be reduced to a
direct sum of the following block types. . .

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 6 / 1



Even Kronecker canonical form



λ− s 1
λ− s 1

λ− s
λ̄+ s
1 λ̄+ s

1 λ̄+ s




s 1

s 1
s

s 1
1


paired eigenvalues (λ,−λ̄) singular blocks


iµ− s

iµ− s 1
iµ− s 1

iµ− s 1




s 1
s 1

s 1
s 1
1


imaginary eigenvalues iµ eigenvalues at ∞

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 7 / 1



What comes out of the EKCF
Theorem [Reis ’11]

Lur’e eqns solvable iff
all imaginary blocks have even size
all infinite blocks have odd size

Moreover, third block of

 0 A− sI B
A∗ + sI Q S

B∗ S∗ R

 ⇔ ker E ⇔

s 1
s 1

s 1
s 1
1




∞ block

s 1
s 1

s
s 1
1




singular block

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 8 / 1



Method I: Cayley transform

Some methods for solving Riccati equations go like this:
1 input: generic control problem with nonsingular R
2 obtain Hamiltonian pencil H− sI
3 Cayley transform (H+ I)− s(H− I)

4 left-multiply by a suitable M to enforce
[
∗ 0
∗ I

]
− s

[
I ∗
0 ∗

]
Besides, the ∗ blocks form a symmetric matrix (symplectic pencil)

5 solve symplectic subspace problem with method of choice
e.g. [Fassbender ’00 book] , [Chu, Fan, Lin ’05]

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 9 / 1



Method I: Cayley transform

We can modify the workflow like this: [P. Reis, preprint]
1 input: generic control problem, R may be singular

2 Cayley transform

 0 A + I B
A∗ + I Q S

B∗ S∗ R

− s

 0 A− I B
A∗ + I Q S

B∗ S∗ R


3 enforce

∗ 0 0
∗ I 0
∗ 0 I

− s

I ∗ ∗
0 ∗ ∗
0 ∗ ∗

, in fact

∗ 0 0
∗ I 0
∗ 0 I

− s

I ∗ 0
0 ∗ 0
0 ∗ I


4 The system is now block triangular, we may ignore the third block

what’s left is again a symplectic pencil
[
∗ 0
∗ I

]
− s

[
I ∗
0 ∗

]
5 Symplectic solver of choice

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 10 / 1



Method I: where do the eigenvalues end up?

We know that third block ⇔ ker E ⇔

s 1
s 1

s 1
s 1
1





After Cayley, this goes to a λ = 1 Jordan block of the same size
Deflation of the second triangular block: shorten every block by 1.

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 11 / 1



Method I: block sizes

After the Cayley transform,
even size imaginary blocks 7→ even size unimodular blocks
odd size λ =∞ blocks 7→ odd size C(λ) = 1 blocks
but we reduce dimension by 1 for each, so they become even size

Even-size unimodular blocks ⇒ solution of the symplectic problem exist,
algorithms work fine

Method I in a nutshell
Cayley-then-deflate, not deflate-then-Cayley!
only for dense problems
not as easy to handle singular pencils

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 12 / 1



Algorithm I — numerical experiments
Some examples from the CAREX benchmark set [Benner, Laub, Mehrmann ’95]
modified to get a singular R. Competitors:

Method I + SDA [Chu, Fan, Lin ’05]

Regularization with different ε + SDA
Regularization + Newton-Kleinman

CAREX # I+SDA ε = 10−6 ε = 10−8 ε = 10−12 ε = 10−8+N

3 6E-15 5E-2 5E-2 5E-2 9E-10
4 4E-15 6E-7 5E-9 1E-7 5E-9
5 2E-10 3E-7 1E-9 3E-8 1E-9
6 2E-15 6E-12 2E-13 1E-12 2E-13

Table: Final accuracy attained (lower=better)

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 13 / 1



Method II: compute and deflate

We wish to compute and deflate the subspace at infinity/singular

Relation defining chains at infinity/singular

Ev1 =0 Avk = Evk+1

First vectors of every chain: spanned by ker E = span

00
I


We’d like to extend the chains by computing the next vectors v2, v3, . . .
from v1
But we cannot take vk+1 = E−1Avk as E is singular

All we can get is E†Avk = vk+1 + w , w ∈ ker E

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 14 / 1



Compute and deflate — infinite blocks

What we’d like to compute
s 1

s 1
s 1

s 1
1





v1v2v3

What we actually get
s 1

s 1
s 1

s 1
1





v1w2w3

w2 ∈ span{v1, v2}
w3 ∈ span{v1, v2, v3}

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 15 / 1



Compute and deflate — when to stop

For both infinite and singular chain, we can stop computing at half of the
chain length (only this is needed for the solution)

s 1
s 1

s 1
s 1
1





w2w3

idea to find out when:
wT

k Awk is preserved by canonical form
wT

k Awk = 0 until we hit the first half of the
chain, 6= 0 afterwards

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 16 / 1



Compute and deflate — interaction between chains

s 1
s 1

s 1
s 1
1





v1v2v3

s 1
s 1
1




y1y2y3

We get instead

w2 ∈ span(v1, v2, y1), z2 ∈ span(y1, y2, v1)

blocks get mixed because recursion is E†Avk = vk+1 + w , w ∈ ker E

Moreover, we don’t get w2 and z2, but span(w2, z2) and so on

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 17 / 1



Further tricks
Need further tricks (won’t mention them here) to handle singular blocks

s 1
s 1

s
s 1
1




v1 ∈ ker E , Ev2 = Av1, Ev3 =Av2, 0 =Av3

and to make sure that infinite chains that have already reached half-chain
won’t creep back in after deflation (due to terms in ker E)

But this procedure can be carried on with success

Crucial point
We have to take rank decisions: what happens if the singular values drop
smoothly?

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 18 / 1



Sparse Lur’e equations

The procedure can be carried on for sparse matrices (assuming the
infinite/singular space is small) yielding a tall skinny W with a basis for
the infinite/singular space

Now, let Π = I −WW T complementary projector

Π

 0 A− sI B
A∗ + sI Q S

B∗ S∗ R

 ΠT ∼=


0 A1 − sI B1 0

A∗1 + sI Q1 S1 0
B∗1 S∗1 R1 0
0 0 0 0


R1 nonsingular, can turn this (implicitly) into a Riccati equation

Key point
Keeping its coefficients in a form that is sparsely representable

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 19 / 1



I heard you like iterations, so. . .

Nested iterations
projected Riccati equation is solved using Newton
Lyapunov equations in Newton are solved using ADI
(Lyapack [Penzl, ’99] )
singular linear systems in ADI are solved using iterative methods

I preconditioning isn’t straightforward,
matrices are represented as products

We only get good results if all these iterations behave reasonably

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 20 / 1



Method II — numerical experiments
Lur’e equations derived from a test problem in Lyapack

demo-r3

n 821
m 6

rank decisions accuracy 6.5× 10−16
infinite chains 6× length 3
singular chains 0

no. of Newton steps taken 7
avg. ADI itns per Newton step 35

relative residual 5.5× 10−15
deviation from stability −8.3× 10−09

Thanks for your attention

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 21 / 1



Method II — numerical experiments
Lur’e equations derived from a test problem in Lyapack

demo-r3

n 821
m 6

rank decisions accuracy 6.5× 10−16
infinite chains 6× length 3
singular chains 0

no. of Newton steps taken 7
avg. ADI itns per Newton step 35

relative residual 5.5× 10−15
deviation from stability −8.3× 10−09

Thanks for your attention

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 21 / 1


