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Control problems and even matrix pencils

(Continous-time) control problems can be naturally expressed as deflating
subspace problems for

Even matrix pencils

A− sE =

 0 A− sI B
A∗ + sI Q S

B∗ S∗ R

 A, E ∈ Rn+n+m,n+n+m

A− sE is even, i.e., A = A∗, E = −E∗

We are looking for a maximal E-neutral deflating subspace, i.e.,

AU =V Â EU =V Ê U,V ∈C2n+m,k U∗EU =0

Moreover, Â − s Ê semi-stable (or semi-unstable).
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From control problems to Riccati equations (sometimes)

When R nonsingular, eliminate the last block =⇒ invariant subspace
problem for a Hamiltonian matrix[

AR −GR
−QR −A∗R

]
− sI =

[
A− BR−1S∗ −BR−1B∗
−Q + SR−1S∗ −(A− BR−1S∗)∗

]
− sI

Associated to an algebraic Riccati equation via[
AR −GR
−QR −A∗R

] [
I
X

]
=

[
I
X

]
M M =AR − GRX

E-neutrality condition becomes simplecticity (i.e., X = X ∗, in this form)

Question
What if R is singular?
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What if R is singular?
The singular R case has been treated stepmotherly (T. Reis)

numerical problems: nontrivial Jordan blocks at infinity and/or
singular pencil
the Riccati equation cannot be formed
in engineering practice, often solved by perturbing+inverting R

ARE must be replaced by a system

Lur’e equations

AT X + XA + Q =Y T Y
XB + S =Y T Z

R =ZT Z

(only X needed in practice)
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Lur’e equations and deflating subspaces

Deflating subspace formulation

 0 −sI + A B
sI + A∗ Q S

B∗ S∗ R


X 0

In 0
0 Im

 =

 In 0
−X Y ∗
0 Z ∗

 [
−sI + A B

Y Z

]

Since E =

 0 In 0
−In 0 0
0 0 0

, ker E =

 0
0
Im

 contains the eigenvectors at ∞

When R is singular, some of them start nontrivial Jordan chains
the other vectors in the chains aren’t as easy to find
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Even Kronecker canonical form

Even Kronecker canonical form [Thompson, ’76 & ’91] , a powerful tool to
analyze Lur’e equations theoretically [Reis, ’11]

Canonical form under transformations of the kind MTAM, MTEM
(for any M nonsingular)

Plays well with
deflating subspaces MT (A− sE)M M−1U = MT V (Â − Ê)

E-neutrality UT M−T MTEM M−1U = 0 (and similar relations)

Even Kronecker canonical form [Thompson, ’76 & ’91]

Every even matrix pencil (i.e., A = A∗, E = −E∗) can be reduced to a
direct sum of the following block types. . .
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Even Kronecker canonical form



λ− s 1
λ− s 1

λ− s
λ̄+ s
1 λ̄+ s

1 λ̄+ s




s 1

s 1
s

s 1
1


paired eigenvalues (λ,−λ̄) singular blocks


iµ− s

iµ− s 1
iµ− s 1

iµ− s 1




s 1
s 1

s 1
s 1
1


imaginary eigenvalues iµ eigenvalues at ∞
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What comes out of the EKCF
Theorem [Reis ’11]

Lur’e eqns solvable iff
all imaginary blocks have even size
all infinite blocks have odd size

Moreover, third block of

 0 A− sI B
A∗ + sI Q S

B∗ S∗ R

 ⇔ ker E ⇔

s 1
s 1

s 1
s 1
1




∞ block

s 1
s 1

s
s 1
1




singular block
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Method I: Cayley transform

Some methods for solving Riccati equations go like this:
1 input: generic control problem with nonsingular R
2 obtain Hamiltonian pencil H− sI
3 Cayley transform (H+ I)− s(H− I)

4 left-multiply by a suitable M to enforce
[
∗ 0
∗ I

]
− s

[
I ∗
0 ∗

]
Besides, the ∗ blocks form a symmetric matrix (symplectic pencil)

5 solve symplectic subspace problem with method of choice
e.g. [Fassbender ’00 book] , [Chu, Fan, Lin ’05]
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Method I: Cayley transform

We can modify the workflow like this: [P. Reis, preprint]
1 input: generic control problem, R may be singular

2 Cayley transform

 0 A + I B
A∗ + I Q S

B∗ S∗ R

− s

 0 A− I B
A∗ + I Q S

B∗ S∗ R


3 enforce

∗ 0 0
∗ I 0
∗ 0 I

− s

I ∗ ∗
0 ∗ ∗
0 ∗ ∗

, in fact

∗ 0 0
∗ I 0
∗ 0 I

− s

I ∗ 0
0 ∗ 0
0 ∗ I


4 The system is now block triangular, we may ignore the third block

what’s left is again a symplectic pencil
[
∗ 0
∗ I

]
− s

[
I ∗
0 ∗

]
5 Symplectic solver of choice
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Method I: where do the eigenvalues end up?

We know that third block ⇔ ker E ⇔

s 1
s 1

s 1
s 1
1





After Cayley, this goes to a λ = 1 Jordan block of the same size
Deflation of the second triangular block: shorten every block by 1.
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Method I: block sizes

After the Cayley transform,
even size imaginary blocks 7→ even size unimodular blocks
odd size λ =∞ blocks 7→ odd size C(λ) = 1 blocks
but we reduce dimension by 1 for each, so they become even size

Even-size unimodular blocks ⇒ solution of the symplectic problem exist,
algorithms work fine

Method I in a nutshell
Cayley-then-deflate, not deflate-then-Cayley!
only for dense problems
not as easy to handle singular pencils
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Algorithm I — numerical experiments
Some examples from the CAREX benchmark set [Benner, Laub, Mehrmann ’95]
modified to get a singular R. Competitors:

Method I + SDA [Chu, Fan, Lin ’05]

Regularization with different ε + SDA
Regularization + Newton-Kleinman

CAREX # I+SDA ε = 10−6 ε = 10−8 ε = 10−12 ε = 10−8+N

3 6E-15 5E-2 5E-2 5E-2 9E-10
4 4E-15 6E-7 5E-9 1E-7 5E-9
5 2E-10 3E-7 1E-9 3E-8 1E-9
6 2E-15 6E-12 2E-13 1E-12 2E-13

Table: Final accuracy attained (lower=better)
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Method II: compute and deflate

We wish to compute and deflate the subspace at infinity/singular

Relation defining chains at infinity/singular

Ev1 =0 Avk = Evk+1

First vectors of every chain: spanned by ker E = span

00
I


We’d like to extend the chains by computing the next vectors v2, v3, . . .
from v1
But we cannot take vk+1 = E−1Avk as E is singular

All we can get is E†Avk = vk+1 + w , w ∈ ker E
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Compute and deflate — infinite blocks

What we’d like to compute
s 1

s 1
s 1

s 1
1





v1v2v3

What we actually get
s 1

s 1
s 1

s 1
1





v1w2w3

w2 ∈ span{v1, v2}
w3 ∈ span{v1, v2, v3}
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Compute and deflate — when to stop

For both infinite and singular chain, we can stop computing at half of the
chain length (only this is needed for the solution)

s 1
s 1

s 1
s 1
1





w2w3

idea to find out when:
wT

k Awk is preserved by canonical form
wT

k Awk = 0 until we hit the first half of the
chain, 6= 0 afterwards
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Compute and deflate — interaction between chains

s 1
s 1

s 1
s 1
1





v1v2v3

s 1
s 1
1




y1y2y3

We get instead

w2 ∈ span(v1, v2, y1), z2 ∈ span(y1, y2, v1)

blocks get mixed because recursion is E†Avk = vk+1 + w , w ∈ ker E

Moreover, we don’t get w2 and z2, but span(w2, z2) and so on
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Further tricks
Need further tricks (won’t mention them here) to handle singular blocks

s 1
s 1

s
s 1
1




v1 ∈ ker E , Ev2 = Av1, Ev3 =Av2, 0 =Av3

and to make sure that infinite chains that have already reached half-chain
won’t creep back in after deflation (due to terms in ker E)

But this procedure can be carried on with success

Crucial point
We have to take rank decisions: what happens if the singular values drop
smoothly?
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Sparse Lur’e equations

The procedure can be carried on for sparse matrices (assuming the
infinite/singular space is small) yielding a tall skinny W with a basis for
the infinite/singular space

Now, let Π = I −WW T complementary projector

Π

 0 A− sI B
A∗ + sI Q S

B∗ S∗ R

 ΠT ∼=


0 A1 − sI B1 0

A∗1 + sI Q1 S1 0
B∗1 S∗1 R1 0
0 0 0 0


R1 nonsingular, can turn this (implicitly) into a Riccati equation

Key point
Keeping its coefficients in a form that is sparsely representable
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I heard you like iterations, so. . .

Nested iterations
projected Riccati equation is solved using Newton
Lyapunov equations in Newton are solved using ADI
(Lyapack [Penzl, ’99] )
singular linear systems in ADI are solved using iterative methods

I preconditioning isn’t straightforward,
matrices are represented as products

We only get good results if all these iterations behave reasonably

F. Poloni (TU Berlin) Lur’e algorithms MMMA 2011 20 / 1



Method II — numerical experiments
Lur’e equations derived from a test problem in Lyapack

demo-r3

n 821
m 6

rank decisions accuracy 6.5× 10−16
infinite chains 6× length 3
singular chains 0

no. of Newton steps taken 7
avg. ADI itns per Newton step 35

relative residual 5.5× 10−15
deviation from stability −8.3× 10−09

Thanks for your attention
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