Computing the nearest stable matrix via optimization on matrix manifolds

Federico Poloni (University of Pisa) Joint work with V. Noferini (Aalto university)

Oselot online seminars, October 2020

Two problems: "the \exists problem"

Given Hurwitz stable $A \in \mathbb{C}^{n \times n}$, find nearest non-stable B. More generally: given A and closed region $\Omega \subseteq \mathbb{C}$, find

$$\min_{\substack{B \in \mathbb{C}^{n \times n} \\ \exists \lambda \in \Lambda(B) \cap \Omega}} \|A - B\|_F$$

Application: how much noise can we add so that $\dot{x} = Ax$ stays stable?

Two problems: "the \forall problem"

Given non-stable $A \in \mathbb{C}^{n \times n}$, find nearest stable B. More generally: given A and closed region $\Omega \subseteq \mathbb{C}$, find

$$\min_{\substack{B \in \mathbb{C}^{n \times n} \\ \Lambda(B) \subseteq \Omega}} \|A - B\|_F$$

Application: noise made $\dot{x} = Ax$ unstable; how to 'fix' A?

Comparing the two problems

When A is non-normal, there is no simple solution.

Previous work on these problems or variants: Benner, Burke, Byers, Gillis, Guglielmi, He, Hinrichsen, Karow, Kostić, Lewis, Meerbergen, Mehl, Mehrmann, Mengi, Michiels, Międlar, Mitchell, Nesterov, Overton, Pritchard, Protasov, Sharma, Stolwijk, Van Dooren, Watson, ... (and surely I have missed many).

Keywords: nearest Ω -stable matrix, pseudospectral abscissa, robust stability, distance to (in)stability.

Most focus on the Frobenius norm $\|M\|_F = \left(\sum_{i,j=1}^n |M_{ij}|^2\right)^{1/2}$.

The \forall problem is considered more difficult; we need to juggle multiple eigenvalues at the same time.

In this talk: the \forall problem, but the technique can be extended to the \exists_k problem.

An "MO-hard" special case

Nearest matrix with all real eigenvalues: $\Omega = \mathbb{R}$.

math overflow	
Home Questions	Finding the nearest matrix with real Accueston eigenvalues
Lisers	Asked 2 years, 6 months ago Active 2 years, 6 months ago Viewed 486 times
Unanswered	In this thread on MATLAB Central, I found a discussion on finding the nearest matrix with real eigenvalues. The first hypothesis was to simply truncate the 14 compared part of the eigenvalues. So, your matrix <i>A</i> , the doesd matrix to <i>A</i> is some norm work use $A' = V \operatorname{real}(D) V^{-1}$ where $A = VDV^{-1}$ is the eigendecomposition of <i>A</i> (assuming <i>A</i> is diagonalizable). This has been found to be failse, however, with the countervarpie
	$A = egin{bmatrix} 1 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$
	The procedure above would produce
	E05 0 01

Attempts to find a closed-form solution (without luck) on Matlab Central and Mathoverflow, dating back to 2010.

The background

Distance from a closed set is a classical topic in mathematical analysis.

Given
$$\Omega \subseteq \mathbb{R}^N$$
 (or also $\mathbb{C} \simeq \mathbb{R}^2$), study functions

$$d_{\Omega}^2(x) = \min_{y \in \Omega} ||x - y||^2, \qquad \quad p_{\Omega}(x) = \arg\min_{y \in \Omega} ||x - y||^2.$$

Known results: d_{Ω}^2 is continuous, semiconcave, and differentiable everywhere apart from a (measure-zero) set where $p_{\Omega}(x)$ is not unique.

The background

Distance from a closed set is a classical topic in mathematical analysis.

Given
$$\Omega \subseteq \mathbb{R}^N$$
 (or also $\mathbb{C} \simeq \mathbb{R}^2$), study functions

$$d_{\Omega}^2(x) = \min_{y \in \Omega} ||x - y||^2, \qquad \quad p_{\Omega}(x) = \arg\min_{y \in \Omega} ||x - y||^2.$$

Known results: d_{Ω}^2 is continuous, semiconcave, and differentiable everywhere apart from a (measure-zero) set where $p_{\Omega}(x)$ is not unique.

F. Poloni (U Pisa)

The set of Hurwitz stable matrices

The set $\{X \in \mathbb{C}^{n \times n} : \Lambda(X) \subseteq \Omega\}$ is closed, so the same results hold for nearest Ω -stable matrix problems.

Challenge 1: the set of Hurwitz stable matrices is non-smooth and non-convex, already for n = 2. Many local minima.

Challenge 2: minimizers often have multiple eigenvalues \implies non-differentiability.

Yet another approach

Our approach: reformulation as optimization on matrix manifolds.

Basic idea simple enough that we can explain it in a few slides.

The problem

$$B = \arg \min_{\Lambda(X) \subseteq \Omega} \|A - X\|_{F}.$$

Real and a complex version:

- Nearest $X \in \mathbb{C}^{n \times n}$ to a given $A \in \mathbb{C}^{n \times n}$;
- **2** Nearest $X \in \mathbb{R}^{n \times n}$ to a given $A \in \mathbb{R}^{n \times n}$.

We start from the complex case.

On triangular matrices

Let us first solve a simpler problem: X upper triangular.

$$\mathcal{T}(A) = \arg \min_{\substack{\Lambda(T) \subseteq \Omega \\ T \text{ upper triangular}}} \|A - T\|_{F}$$

$$= \arg \min_{T_{ii} \in \Omega} \left\| \begin{bmatrix} A_{11} - T_{11} & A_{12} - T_{12} & A_{13} - T_{13} & \cdots \\ A_{21} & A_{22} - T_{22} & A_{23} - T_{23} & \cdots \\ A_{31} & A_{32} & A_{33} - T_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \right\|_{F}$$

Clearly, the best choice is

- $T_{ij} = A_{ij}$ above the diagonal,
- $T_{ii} = p_{\Omega}(A_{ii})$ on the diagonal.

On triangular matrices

Let us first solve a simpler problem: X upper triangular.

$$\mathcal{T}(A) = \arg \min_{\substack{\Lambda(T) \subseteq \Omega \\ T \text{ upper triangular}}} \|A - T\|_{F}$$

$$= \arg \min_{T_{ii} \in \Omega} \left\| \begin{bmatrix} A_{11} - T_{11} & A_{12} - T_{12} & A_{13} - T_{13} & \cdots \\ A_{21} & A_{22} - T_{22} & A_{23} - T_{23} & \cdots \\ A_{31} & A_{32} & A_{33} - T_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \right\|_{F}$$

Clearly, the best choice is

- $T_{ij} = A_{ij}$ above the diagonal,
- $T_{ii} = p_{\Omega}(A_{ii})$ on the diagonal.

Triangular case

Lemma

The solution to

$$\mathcal{T}(A) = \arg \min_{\substack{A(T) \subseteq \Omega \\ T \text{ upper triangular}}} \|A - T\|_F$$

is

$$\mathcal{T}(A)_{ij} = \begin{cases} A_{ij} & i < j, \\ p_{\Omega}(A_{ij}) & i = j, \\ 0 & i > j. \end{cases}$$

The optimum is $\|\mathcal{L}(A)\|_{F}$, where $\mathcal{L}(A) = A - \mathcal{T}(A)$ has entries

$$\mathcal{L}(A)_{ij} = egin{cases} 0 & i < j, \ A_{ij} - p_{\Omega}(A_{ij}) & i = j, \ A_{ij} & i > j. \end{cases}$$

Example

With $\Omega = \{\lambda : \operatorname{Re} \lambda \leq 0\}$ (nearest Hurwitz stable):

 $\mathcal{T}(A)$ is the upper triangular Hurwitz stable matrix nearest to A, with distance $\|\mathcal{L}(A)\|_{F}$.

In an unknown basis, the solution X is upper triangular!

Schur form $X = UTU^*$: T upper triangular, $U \in U_n$ (unitary matrices).

$$\min_{\Lambda(X)\subseteq\Omega} \|A - X\|_F = \min_{\substack{U\in\mathcal{U}_n\\ U\in\mathcal{U}_n\\ U\in\mathcal{U}_n\\ U\in\mathcal{U}_n\\ \mathcal{I} \text{ triangular}}} \min_{\substack{A(T)\subseteq\Omega\\ T \text{ triangular}}} \|U^*AU - T\|_F$$
$$= \min_{\substack{U\in\mathcal{U}_n\\ U\in\mathcal{U}_n}} \|\mathcal{L}(U^*AU)\|_F.$$

In an unknown basis, the solution X is upper triangular!

Schur form $X = UTU^*$: T upper triangular, $U \in U_n$ (unitary matrices).

$$\min_{\Lambda(X)\subseteq\Omega} \|A - X\|_F = \min_{\substack{U\in\mathcal{U}_n \ A(T)\subseteq\Omega\\T \text{ triangular}}} \min_{\substack{U\in\mathcal{U}_n \ A(T)\subseteq\Omega\\T \text{ triangular}}} \|A - UTU^*\|_F$$
$$= \min_{\substack{U\in\mathcal{U}_n \ A(T)\subseteq\Omega\\T \text{ triangular}}} \|U^*AU - T\|_F$$

In an unknown basis, the solution X is upper triangular!

Schur form $X = UTU^*$: T upper triangular, $U \in U_n$ (unitary matrices).

$$\min_{\Lambda(X)\subseteq\Omega} \|A - X\|_F = \min_{\substack{U\in\mathcal{U}_n\\ U\in\mathcal{U}_n\\ U\in\mathcal{U}_n\\ U\in\mathcal{U}_n\\ T \text{ triangular}}} \min_{\substack{\Lambda(T)\subseteq\Omega\\ T \text{ triangular}}} \|U^*AU - T\|_F$$

$$= \min_{\substack{U\in\mathcal{U}_n\\ U\in\mathcal{U}_n}} \|\mathcal{L}(U^*AU)\|_F.$$

In an unknown basis, the solution X is upper triangular!

Schur form $X = UTU^*$: T upper triangular, $U \in U_n$ (unitary matrices).

$$\begin{split} \min_{\Lambda(X)\subseteq\Omega} \|A - X\|_F &= \min_{U\in\mathcal{U}_n} \min_{\substack{\Lambda(T)\subseteq\Omega\\T \text{ triangular}}} \|A - UTU^*\|_F \\ &= \min_{\substack{U\in\mathcal{U}_n\\U\in\mathcal{U}_n}} \min_{\substack{\Lambda(T)\subseteq\Omega\\T \text{ triangular}}} \|U^*AU - T\|_F \\ &= \min_{\substack{U\in\mathcal{U}_n\\U\in\mathcal{U}_n}} \|\mathcal{L}(U^*AU)\|_F. \end{split}$$

Optimization on (matrix) manifolds

Optimization on matrix manifolds has been studied widely recently: see e.g. [Absil, Mahony, Sepulchre book].

Many first- and second-order methods available.

Key ideas:

- switch to Riemannian gradient and Hessian;
- the Riemannian gradient lives in the tangent space; we need a way to "retract" $x_k + g_k$ onto the manifold.

Optimization on manifolds: the set-up

We just use these algorithms as black box (for now).

• Manifold: U_n (unitary matrices).

• Function:
$$f(U) = \|\mathcal{L}(U^*AU)\|_F^2$$
, with

$$\mathcal{L}(A)_{ij} = \begin{cases} 0 & i < j, \\ A_{ij} - p_{\Omega}(A_{ij}) & i = j, \\ A_{ij} & i > j. \end{cases}$$

- Gradient: $\nabla_U f = 2U$ skew $(TL^* L^*T)$, where $L = \mathcal{L}(U^*AU)$, $T = \mathcal{T}(U^*AU)$, skew $(M) = \frac{1}{2}(M M^*)$.
- Algorithm: quasi-Newton (trust-region).

Remark There is nothing that computes eigenvalues here. (!!) The optimization procedure "does that" for us, and returns X in Schur form. Differentiable formulation: both f and the constraint $U^*U = I$ are C^1 (outside of the medial axis).

Optimization on manifolds: the set-up

We just use these algorithms as black box (for now).

• Manifold: U_n (unitary matrices).

• Function:
$$f(U) = \|\mathcal{L}(U^*AU)\|_F^2$$
, with
 $\mathcal{L}(A)_{ij} = \begin{cases} 0 & i < j, \\ A_{ij} - p_\Omega(A_{ij}) & i = j, \\ A_{ij} & i > j. \end{cases}$

- Gradient: $\nabla_U f = 2U$ skew $(TL^* L^*T)$, where $L = \mathcal{L}(U^*AU)$, $T = \mathcal{T}(U^*AU)$, skew $(M) = \frac{1}{2}(M M^*)$.
- Algorithm: quasi-Newton (trust-region).

Remark There is nothing that computes eigenvalues here. (!!) The optimization procedure "does that" for us, and returns X in Schur form.

Differentiable formulation: both f and the constraint $U^*U = I$ are C^1 (outside of the medial axis).

An aside: relation to Jacobi eigensolver

If we run the algorithm with $\Omega = \mathbb{C}$, the solution is $A = B = UTU^*$, i.e., the optimization algorithm just computes the Schur form of A.

This reminds of the Jacobi eigenvalue algorithm: apply a series of Givens rotations trying to zero out tril(A) \iff coordinate descent on U_n .

In practice, coordinate descent did not perform well on this problem. However, many advanced computational tricks exist for eigensolvers; maybe we can borrow some.

F. Poloni (U Pisa)

The real case

The real case is more involved, because the real Schur form is more involved.

Easy case: $\Omega \subseteq \mathbb{R}$.

In this case, each admissible X can be written as $X = QTQ^{\top}$, where $Q \in \mathcal{O}_n$ (orthogonal matrices) and T is (truly) triangular. Everything works like in the complex case.

This works for the 'nearest matrix with real eigenvalues' problem, for instance.

```
Hard case: general \Omega.
We need to handle 2 × 2 blocks in the correct way.
```

General real case

Each real matrix is similar to

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} & \dots \\ 0 & T_{22} & T_{23} & \dots \\ 0 & 0 & T_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

where all T_{ii} are 2 × 2, except for a lone final entry if *n* odd. (The T_{ii} may have real eigenvalues.)

We define $\mathcal{T}(A), \mathcal{L}(A)$ blockwise:

$$\mathcal{T}(A)_{ij} = \begin{cases} A_{ij} & i < j, \\ p_{\Omega}(A_{ij}) & i = j, \\ 0 & i > j, \end{cases} \quad \mathcal{L}(A)_{ij} = \begin{cases} 0 & i < j, \\ A_{ij} - p_{\Omega}(A_{ij}) & i = j, \\ A_{ij} & i > j. \end{cases}$$

 $(A_{ij} \text{ are } 2 \times 2 \text{ blocks here.})$

Real case: 2×2 projection

We need a way to compute $p_{\Omega}(A_{ij})$, i.e., the 'projection' of $A_{ij} \in \mathbb{R}^{2 \times 2}$ onto $\{\Lambda(X) \subseteq \Omega\}$.

I.e., we need a way to solve the 2×2 version of our problem.

This is more involved; we provide an implementation for the Hurwitz stable case.

Projection on Hurwitz stable 2×2 matrices

Let $A \in \mathbb{R}^{2 \times 2}$, and $B = p_{\Omega}(A)$ the nearest Hurwitz stable matrix to A.

First result: we can reduce to matrices with equal diagonal entries.

Lemma

Each A is similar to an
$$\hat{A} = Q^{\top}AQ$$
 with $\hat{A}_{11} = \hat{A}_{22}$.

Lemma

If $A_{11} = A_{22}$, then $B_{11} = B_{22}$.

Projection on Hurwitz stable 2×2 matrices

Second result: casework based on trace and determinant.

Lemma (Hurwitz)

 $X \in \mathbb{R}^{2 \times 2}$ Hurwitz stable iff $\operatorname{Tr}(X) \leq 0$, $\det(X) \geq 0$.

Lemma

When A is not Hurwitz stable, B is either:

- a (local) minimizer on ${Tr(X) = 0}$,
- 2 a (local) minimizer on $\{\det(X) = 0\}$,
- a (local) minimizer on ${Tr(X) = det(X) = 0}$.

Minimizers in all three cases can be computed explicitly with a little work (for instance, truncated SVD solves case 2).

The set of 2×2 Hurwitz stable matrices

We can now make more sense of this picture.

Optimization on manifolds: the set-up

We can formulate a real analogue of the algorithm.

- Manifold: \mathcal{O}_n (orthogonal matrices).
- Function: $f(Q) = \|\mathcal{L}(Q^{\top}AQ)\|_{F}^{2}$, with $\mathcal{L}(A)_{ij} = \begin{cases} 0 & i < j, \\ A_{ij} - p_{\Omega}(A_{ij}) & i = j, \text{ (the scalar version, if } \Omega \subseteq \mathbb{R}, \text{ or the} \\ A_{ij} & i > j. \end{cases}$ $2 \times 2 \text{ block version}.$
- Gradient: $\nabla_Q f = 2Q$ skew $(TL^{\top} L^{\top}T)$, where $L = \mathcal{L}(Q^{\top}AQ), T = \mathcal{T}(Q^{\top}AQ)$, skew $(M) = \frac{1}{2}(M M^{\top})$.

• Algorithm: quasi-Newton (trust-region).

A conjecture

Let us consider the complex version of the problem

$$B = \arg\min_{\substack{\Lambda(X) \subseteq \Omega\\ X \in \mathbb{C}^{n \times n}}} ||A - X||_F.$$

Open problem

When A is a real matrix, is B also always a real matrix?

Experiments suggest so, at least for $\Omega = Hurwitz$ stable.

If the answer is yes, then one can also use the complex version of the algorithm for the real case.

- **Pros** : simpler to write; no need to solve the 2×2 case by hand.
- Cons : no reduction in dimensionality of the problem.

A conjecture

Let us consider the complex version of the problem

$$B = \arg\min_{\substack{\Lambda(X) \subseteq \Omega \\ X \in \mathbb{C}^{n \times n}}} ||A - X||_F.$$

Open problem

When A is a real matrix, is B also always a real matrix?

Experiments suggest so, at least for $\Omega =$ Hurwitz stable.

If the answer is yes, then one can also use the complex version of the algorithm for the real case.

- Pros : simpler to write; no need to solve the 2×2 case by hand.
- Cons : no reduction in dimensionality of the problem.

Numerical experiments: setup

Tool Manopt [Boumal, Mishra, Absil, Sepulchre], a Matlab toolbox.

Competitors Various algorithms available on N. Gillis' home page:

- [Burke, Henrion, Lewis, Overton]: non-smooth quasi-Newton methods
- [Orbandexivry, Nesterov, Van Dooren]: convex approximation
- [Gillis, Sharma]: reformulation as dissipative Hamiltonian system

Not in these experiments, but some remarks later:

• [Guglielmi, Lubich, Manetta, Protasov]: reformulation as a system of ODEs (arguably the best algorithm available so far).

All algorithms promise only local minima.

Numerical experiments: results

Numerical experiments: results

Numerical experiments: quality of local minima found

Figure: Performance profile of the values of $||A - X||_F$ obtained by the algorithms on 100 random 10 × 10 matrices (equal split of rand and randn).

Multiple eigenvalues

Empirical observation: often the other algorithms (especially BCD and Grad) cannot find local minima with multiple zero eigenvalues.

Eigenvalues of minimizer B for a random 6×6 matrix A

Related: in Orth, diag(T) gives multiple eigenvalues much more accurately than eig(B) (accuracy $\mathbf{u}^{1/k}$ from perturbation theory).

Comparison with ODE approach

No extensive comparison yet with ODE approach [Guglielmi, Lubich] (due to code availability).

- On a difficult small example (30 × 30 Grcar matrix), we seem to win both in terms of CPU time and quality of minimum ||A - B||_F (5.65 vs 6.50, by finding a minimizer with a pair of complex conjugate eigenvalues of multiplicity 14!).
- \bigcirc On large-scale problems (e.g. one with n = 800), the optimizer from Manopt does not converge.
- ③ ODE method can handle various matrix structures and we cannot.

Conclusions

- New framework to attack nearest-stable-matrix problems via optimization on matrix manifolds.
- Avoids some of the main troubles with the problem: tricky feasible region, numerical difficulties with eigenvalue computation.
- Great numerical results for small matrices. Still work needed for larger matrices ($n \approx 100 1000$).
- Design space to explore: choose good initial value; fine-tune the optimization method; borrow tricks from eigensolvers.
- The approach works for a generic Ω, and can be generalized to variants (e.g., nearest matrix with at least k eigenvalues in Ω).

Thanks for your attention!

Conclusions

- New framework to attack nearest-stable-matrix problems via optimization on matrix manifolds.
- Avoids some of the main troubles with the problem: tricky feasible region, numerical difficulties with eigenvalue computation.
- Great numerical results for small matrices. Still work needed for larger matrices ($n \approx 100 1000$).
- Design space to explore: choose good initial value; fine-tune the optimization method; borrow tricks from eigensolvers.
- The approach works for a generic Ω, and can be generalized to variants (e.g., nearest matrix with at least k eigenvalues in Ω).

Thanks for your attention!