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Two problems: “the ∃ problem”

eig(A) eig(B)

Given Hurwitz stable A ∈ Cn×n, find nearest non-stable B.
More generally: given A and closed region Ω ⊆ C, find

min
B∈Cn×n

∃λ∈Λ(B)∩Ω

‖A− B‖F

Application: how much noise can we add so that ẋ = Ax stays stable?
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Two problems: “the ∀ problem”

eig(A) eig(B)

Given non-stable A ∈ Cn×n, find nearest stable B.
More generally: given A and closed region Ω ⊆ C, find

min
B∈Cn×n
Λ(B)⊆Ω

‖A− B‖F

Application: noise made ẋ = Ax unstable; how to ‘fix’ A?
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Comparing the two problems
When A is non-normal, there is no simple solution.
Previous work on these problems or variants: Benner, Burke, Byers, Gillis,
Guglielmi, He, Hinrichsen, Karow, Kostić, Lewis, Meerbergen, Mehl,
Mehrmann, Mengi, Michiels, Międlar, Mitchell, Nesterov, Overton,
Pritchard, Protasov, Sharma, Stolwijk, Van Dooren, Watson, . . . (and
surely I have missed many).
Keywords: nearest Ω-stable matrix, pseudospectral abscissa, robust
stability, distance to (in)stability.

Most focus on the Frobenius norm ‖M‖F =
(∑n

i ,j=1|Mij |2
)1/2

.

The ∀ problem is considered more difficult; we need to juggle multiple
eigenvalues at the same time.
In this talk: the ∀ problem, but the technique can be extended to the ∃k
problem.
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An “MO-hard” special case
Nearest matrix with all real eigenvalues: Ω = R.

Attempts to find a closed-form solution (without luck) on Matlab Central
and Mathoverflow, dating back to 2010.
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The background
Distance from a closed set is a classical topic in mathematical analysis.

Given Ω ⊆ RN (or also C ' R2), study functions

d2
Ω(x) = min

y∈Ω
‖x − y‖2, pΩ(x) = arg min

y∈Ω
‖x − y‖2.

Known results: d2
Ω is continuous, semiconcave, and differentiable

everywhere apart from a (measure-zero) set where pΩ(x) is not unique.
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The set of Hurwitz stable matrices
The set {X ∈ Cn×n : Λ(X ) ⊆ Ω} is closed, so the same results hold for
nearest Ω-stable matrix problems.
Challenge 1: the set of Hurwitz stable matrices is non-smooth and
non-convex, already for n = 2. Many local minima.
Challenge 2: minimizers often have multiple eigenvalues =⇒
non-differentiability.
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Yet another approach
Our approach: reformulation as optimization on matrix manifolds.
Basic idea simple enough that we can explain it in a few slides.

The problem

B = arg min
Λ(X)⊆Ω

‖A− X‖F .

Real and a complex version:
1 Nearest X ∈ Cn×n to a given A ∈ Cn×n;
2 Nearest X ∈ Rn×n to a given A ∈ Rn×n.

We start from the complex case.
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On triangular matrices
Let us first solve a simpler problem: X upper triangular.

T (A) = arg min
Λ(T )⊆Ω

T upper triangular

‖A− T‖F

= arg min
Tii∈Ω

∥∥∥∥∥∥∥∥∥∥


A11 − T11 A12 − T12 A13 − T13 . . .

A21 A22 − T22 A23 − T23 . . .
A31 A32 A33 − T33 . . .
... ... ... . . .


∥∥∥∥∥∥∥∥∥∥

F

Clearly, the best choice is
Tij = Aij above the diagonal,
Tii = pΩ(Aii) on the diagonal.
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Triangular case

Lemma
The solution to

T (A) = arg min
Λ(T )⊆Ω

T upper triangular

‖A− T‖F

is

T (A)ij =


Aij i < j ,
pΩ(Aij) i = j ,
0 i > j .

The optimum is ‖L(A)‖F , where L(A) = A− T (A) has entries

L(A)ij =


0 i < j ,
Aij − pΩ(Aij) i = j ,
Aij i > j .
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Example
With Ω = {λ : Reλ ≤ 0} (nearest Hurwitz stable):

3 −1 1 2
−1 −2 4 0
2 1 −1 1
1 2 2 1


︸ ︷︷ ︸

A

=


0 −1 1 2
0 −2 4 0
0 0 −1 1
0 0 0 0


︸ ︷︷ ︸

T (A)

+


3 0 0 0
−1 0 0 0
2 1 0 0
1 2 2 1


︸ ︷︷ ︸

L(A)

T (A) is the upper triangular Hurwitz stable matrix nearest to A, with
distance ‖L(A)‖F .
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Schur trick

In an unknown basis, the solution X is upper triangular!

Schur form X = UTU∗: T upper triangular, U ∈ Un (unitary matrices).

min
Λ(X)⊆Ω

‖A− X‖F = min
U∈Un

min
Λ(T )⊆Ω

T triangular

‖A− UTU∗‖F

= min
U∈Un

min
Λ(T )⊆Ω

T triangular

‖U∗AU − T‖F

= min
U∈Un
‖L(U∗AU)‖F .

We transformed a problem on {Λ(X ) ⊆ Ω} into one on Un: simpler
structure, half as many degrees of freedom.
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Optimization on (matrix) manifolds
Optimization on matrix manifolds has been studied widely recently: see
e.g. [Absil, Mahony, Sepulchre book].
Many first- and second-order methods available.
Key ideas:

switch to Riemannian gradient and Hessian;
the Riemannian gradient lives in the tangent space; we need a way to
“retract” xk + gk onto the manifold.

xk

xk+1
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Optimization on manifolds: the set-up
We just use these algorithms as black box (for now).

Manifold: Un (unitary matrices).
Function: f (U) = ‖L(U∗AU)‖2F , with

L(A)ij =


0 i < j ,
Aij − pΩ(Aij) i = j ,
Aij i > j .

Gradient: ∇U f = 2U skew(TL∗ − L∗T ), where
L = L(U∗AU),T = T (U∗AU), skew(M) = 1

2(M −M∗).
Algorithm: quasi-Newton (trust-region).

Remark There is nothing that computes eigenvalues here. (!!) The
optimization procedure “does that” for us, and returns X in Schur form.
Differentiable formulation: both f and the constraint U∗U = I are C1

(outside of the medial axis).
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An aside: relation to Jacobi eigensolver
If we run the algorithm with Ω = C, the solution is A = B = UTU∗, i.e.,
the optimization algorithm just computes the Schur form of A.
This reminds of the Jacobi eigenvalue algorithm: apply a series of Givens
rotations trying to zero out tril(A) ⇐⇒ coordinate descent on Un.

In practice, coordinate descent did not perform well on this problem.
However, many advanced computational tricks exist for eigensolvers;
maybe we can borrow some.

F. Poloni (U Pisa) Nearest stable matrix Oselot 2020 15 / 30



The real case
The real case is more involved, because the real Schur form is more
involved.
Easy case: Ω ⊆ R.
In this case, each admissible X can be written as X = QTQ>, where
Q ∈ On (orthogonal matrices) and T is (truly) triangular.
Everything works like in the complex case.

This works for the ‘nearest matrix with real eigenvalues’ problem, for
instance.

Hard case: general Ω.
We need to handle 2× 2 blocks in the correct way.
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General real case
Each real matrix is similar to

T11 T12 T13 . . .
0 T22 T23 . . .
0 0 T33 . . .
... ... ... . . .


where all Tii are 2× 2, except for a lone final entry if n odd.
(The Tii may have real eigenvalues.)
We define T (A),L(A) blockwise:

T (A)ij =


Aij i < j ,
pΩ(Aij) i = j ,
0 i > j ,

L(A)ij =


0 i < j ,
Aij − pΩ(Aij) i = j ,
Aij i > j .

(Aij are 2× 2 blocks here.)
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Real case: 2× 2 projection
We need a way to compute pΩ(Aij), i.e., the ‘projection’ of Aij ∈ R2×2

onto {Λ(X ) ⊆ Ω}.
I.e., we need a way to solve the 2× 2 version of our problem.
This is more involved; we provide an implementation for the Hurwitz
stable case.
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Projection on Hurwitz stable 2× 2 matrices
Let A ∈ R2×2, and B = pΩ(A) the nearest Hurwitz stable matrix to A.
First result: we can reduce to matrices with equal diagonal entries.

Lemma
Each A is similar to an Â = Q>AQ with Â11 = Â22.

Lemma
If A11 = A22, then B11 = B22.
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Projection on Hurwitz stable 2× 2 matrices
Second result: casework based on trace and determinant.
Lemma (Hurwitz)
X ∈ R2×2 Hurwitz stable iff Tr(X ) ≤ 0, det(X ) ≥ 0.

Lemma
When A is not Hurwitz stable, B is either:

1 a (local) minimizer on {Tr(X ) = 0},
2 a (local) minimizer on {det(X ) = 0},
3 a (local) minimizer on {Tr(X ) = det(X ) = 0}.

Minimizers in all three cases can be computed explicitly with a little work
(for instance, truncated SVD solves case 2).
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The set of 2× 2 Hurwitz stable matrices
We can now make more sense of this picture.
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Optimization on manifolds: the set-up
We can formulate a real analogue of the algorithm.

Manifold: On (orthogonal matrices).
Function: f (Q) = ‖L(Q>AQ)‖2F , with

L(A)ij =


0 i < j ,
Aij − pΩ(Aij) i = j ,
Aij i > j .

(the scalar version, if Ω ⊆ R, or the

2× 2 block version).
Gradient: ∇Qf = 2Q skew(TL> − L>T ), where
L = L(Q>AQ),T = T (Q>AQ), skew(M) = 1

2(M −M>).
Algorithm: quasi-Newton (trust-region).
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A conjecture
Let us consider the complex version of the problem

B = arg min
Λ(X)⊆Ω
X∈Cn×n

‖A− X‖F .

Open problem
When A is a real matrix, is B also always a real matrix?

Experiments suggest so, at least for Ω = Hurwitz stable.
If the answer is yes, then one can also use the complex version of the
algorithm for the real case.

Pros : simpler to write; no need to solve the 2× 2 case by hand.
Cons : no reduction in dimensionality of the problem.
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Numerical experiments: setup
Tool Manopt [Boumal, Mishra, Absil, Sepulchre], a Matlab toolbox.
Competitors Various algorithms available on N. Gillis’ home page:

[Burke, Henrion, Lewis, Overton]: non-smooth quasi-Newton methods
[Orbandexivry, Nesterov, Van Dooren]: convex approximation
[Gillis, Sharma]: reformulation as dissipative Hamiltonian system

Not in these experiments, but some remarks later:
[Guglielmi, Lubich, Manetta, Protasov]: reformulation as a system of ODEs

(arguably the best algorithm available so far).

All algorithms promise only local minima.
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Numerical experiments: results
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Numerical experiments: results
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Numerical experiments: quality of local minima found
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Figure: Performance profile of the values of ‖A− X‖F obtained by the algorithms
on 100 random 10× 10 matrices (equal split of rand and randn).
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Multiple eigenvalues
Empirical observation: often the other algorithms (especially BCD and
Grad) cannot find local minima with multiple zero eigenvalues.
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Related: in Orth, diag(T ) gives multiple eigenvalues much more
accurately than eig(B) (accuracy u1/k from perturbation theory).
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Comparison with ODE approach
No extensive comparison yet with ODE approach [Guglielmi, Lubich] (due to
code availability).
, On a difficult small example (30× 30 Grcar matrix), we seem to win

both in terms of CPU time and quality of minimum ‖A− B‖F (5.65
vs 6.50, by finding a minimizer with a pair of complex conjugate
eigenvalues of multiplicity 14!).

/ On large-scale problems (e.g. one with n = 800), the optimizer from
Manopt does not converge.

/ ODE method can handle various matrix structures and we cannot.
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Conclusions
New framework to attack nearest-stable-matrix problems via
optimization on matrix manifolds.
Avoids some of the main troubles with the problem: tricky feasible
region, numerical difficulties with eigenvalue computation.
Great numerical results for small matrices. Still work needed for larger
matrices (n ≈ 100− 1000).
Design space to explore: choose good initial value; fine-tune the
optimization method; borrow tricks from eigensolvers.
The approach works for a generic Ω, and can be generalized to
variants (e.g., nearest matrix with at least k eigenvalues in Ω).

Thanks for your attention!
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