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We provide a feasible generalized least squares estimator for (unrestricted)
multivariate GARCH(1,1) models. We show that the estimator is consistent
and asymptotically normally distributed under mild assumptions. Unlike the
(quasi) maximum likelihood method, the feasible GLS is considerably fast to
implement and does not require any complex optimization routine.
We present numerical experiments on simulated data showing the perfor-

mance of the GLS estimator, and discuss the limitations of our approach.
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1. Introduction
Consider the unrestricted multivariate GARCH(1,1) model

yt =H1/2
t εt, t = 1, 2, . . . , n,

where εt ∈ Rd is an i.i.d. noise vector with mean 0 and variance Id, and the conditional
covariance matrix Ht is given by

ht =c+Axt−1 +Bht−1, t = 2, 3, . . . , n, (1)

with ht := vech(Ht), xt := vech(ytyTt ), d̄ = d(d+1)
2 , A,B ∈ Rd̄×d̄, c ∈ Rd̄.

Here, vech(M) represents the operator that stacks the elements of the lower triangular
part of a symmetric matrix M to form a d̄× 1 vector.
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Multivariate GARCH models are traditionally difficult to estimate, due to the large
number of free parameters Bauwens et al. [2006], Francq and Zakoïan [2010]. Quasi-
maximum likelihood (QML) estimators are slow to converge and complicated to implement
(see Bauwens et al. [2006]). In Sbrana and Poloni [2013], we recently introduced a closed-
form estimator based on the use of the moments and on linear algebra techniques. This
estimator is consistent under standard assumptions; namely,

Assumption 1 Ht is positive definite almost surely;

Assumption 2 ρ(A+B) < 1 and ρ(B) < 1;

Assumption 3 the fourth moments of yt exist and are finite;

Assumption 4 the GARCH model is identifiable, stationary, ergodic and strongly mixing.

When the distribution of εt is spherical, [Hafner, 2003, Theorem 3] gives an algebraic
condition equivalent to Assumption 3 that is easy to test in practice. However, we do
not need to assume sphericity here.
Assumption 4 may appear strong at first sight, but [Francq and Zakoïan, 2010, Theo-

rem 11.5] and Boussama [2006] prove that it holds under mild sufficient conditions on the
noise. Normality of the estimator can be proved only under the condition that the eighth
moments of yt exist finite, however. Another drawback is that its convergence rate is
determined by that of the moments, which is notoriously quite slow. In Sbrana and Poloni
[2013], we suggest using this estimator as a starting point for the QML maximization
procedure; however, this means that we are led back to QML, with all its numerical
issues.

In this paper, we suggest an alternative that avoids completely the use of QML, that is,
a FGLS-type estimator for the unrestricted multivariate GARCH(1,1). We prove that this
estimator is consistent and asymptotically normal distributed (with only Assumption 3
on the moments) when started with a consistent initial value, such as the aforementioned
closed-form estimator. Moreover, its asymptotic variance is equal to that of the QML
estimator. The accuracy of this new two-step estimator is good enough to be comparable
with that of QML, while it is considerably faster and the whole procedure is simple
enough to describe and implement, without relying on advanced optimization techniques.
Our proof generalizes the one in [Francq and Zakoïan, 2010, Theorem 6.3] for the

univariate ARCH(p), and follows in some steps the one of Comte and Lieberman [2003]
and Hafner and Preminger [2009] for the asymptotic properties of the QML estimator.
Nevertheless, we aim to give a self-contained exposition in this paper.
The following additional assumption is needed for proving the asymptotic properties.

Assumption 5 C = vech-1(c) > 0, and A and B are such that A vech(X) > 0 and
B vech(X) > 0 for each X ≥ 0, X 6= 0.

This is a technical hypothesis; note that, if it is adopted, Assumption 1 and the second part
of Assumption 2 are automatically satisfied. This assumption reduces to A > 0, B > 0,
c > 0 for the univariate GARCH; it is a direct generalization of the similar assumptions
made for the univariate ARCH(p) in [Francq and Zakoïan, 2010, Theorem 6.3].
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Identifiability in Assumption 4 means that the task of estimating the model is well-posed
and has a unique solution; it is therefore unavoidable.
Lastly, a word of warning on another important issue is needed. Identifying a simple

condition on A, B and c that is both necessary and sufficient to guarantee Assumption 1
is still an open problem; hence, it is possible that the parameter values produced by
estimators such as ours do not represent a well-posed model. Projection or truncation
methods can be introduced at different stages to fix this issue; for instance, whenever the
recurrence produces a matrix Ht which is not positive-definite, one can alter artificially
its negative eigenvalues and set them to zero; or one can modify A, B and c to enforce
Assumption 5.

This is a problem that may well arise in empirical analysis, especially when dealing with
small samples or when the GARCH model only approximates the data (misspecification
issues). The asymptotic properties of the estimator that we are considering are not
affected by this issue, since they only consider the limit for n → ∞ for a time series
produced by a model satisfying the assumptions; similarly, any ad-hoc method to fix or
exclude non-positive-definiteness will not affect the asymptotic properties of an estimator,
since it will only be applied when the parameters are outside of a suitable neighbourhood
of their limit values. Still, this issue has to be considered and treated in numerical code
when implementing estimators for multivariate GARCH models working on empirical
data.

2. The multivariate feasible generalized least-squares estimator
We shall denote with M1/2 the unique positive definite square root of a positive definite
matrixM , and with ρ(M) the spectral radius, i.e., the maximum of |λ| over the eigenvalues
λ of M . Finally, with ‖M‖ we denote the Euclidean norm on vectors, and the induced
operator norm ‖M‖ := max‖v‖=1 ‖Mv‖ on matrices. By ‖M‖F we denote the Frobenius
norm of a matrix, i.e., the sum-of-squares norm, ‖M‖F := ‖vec(F )‖.
We define a sequence of estimators

θ̂` :=

 ĉ`
vec(Â`)
vec(B̂`)

 ,
starting from the closed-form estimator (ĉ0, Â0, B̂0) of the previous section, each one a
refinement of the previous.

We describe in the following the generic step of computing θ̂`+1 from θ̂`; for simplicity,
we drop the subscript `.

The idea of the estimator is that the family of random variables Ξt := H
−1/2
t (ytyTt −

Ht)H−1/2
t = εtε

T
t −I are i.i.d. with zero mean; hence we can run a least squares estimator

on them. We use the definition of Ht to rewrite this as

Ξt = H
−1/2
t (ytyTt − vech-1(c+Axt−1 +Bht−1))H−1/2

t , t = 2, 3, . . . , n. (2)
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Now we employ the previous estimate θ̂` = θ̂ to derive an approximation Ĥt to use in (2)
instead of the unknown exact value Ht. Hence we choose an arbitrary initial value ĥ1,
and define recursively

ĥt = ĉ+ Âxt−1 + B̂ĥt−1, t = 2, 3, . . . , n.

Equation (2) becomes

Ξ̂t = Ĥ
−1/2
t (ytyTt − vech-1(c+Axt−1 +Bĥt−1))Ĥ−1/2

t , t = 2, 3, . . . , n. (3)

This is a linear function in c, A,B; therefore, we can use linear least squares to compute

(ĉ`+1, Â`+1, B̂`+1) = arg min
c,A,B

n∑
t=2

∥∥∥Ĥ−1/2
t (ytyTt − vech-1(c+Axt−1 +Bĥt−1))Ĥ−1/2

t

∥∥∥
F
,

(4)
which is the next step of our iterative estimator.

Now, we vectorize everything to transform this least squares problem into a more
common vector form. For a symmetric matrix H and h = vechH, it holds that ‖H‖F =
hTWh, where W is the diagonal matrix with elements

Wii =
{

1 if i = j(j+1)
2 for some integer j,

2 otherwise.
(5)

This weighting matrix is needed because off-diagonal elements appear twice in ‖H‖F ,
while diagonal elements only once. We note thatW = DT

dDd, where Dd is the duplication
matrix Abadir and Magnus [2005]1.
We define ḣt =

[
1 xTt−1 hTt−1

]
⊗ Id̄, so that (1) can be rewritten as

ht = ḣtθ, θ =

 c
vec(A)
vec(B)

 .
Note that ∂ht

∂θ = ḣt, which justifies our choice of the notation.
Moreover, we denote by Ĥt the d̄×d̄ matrix such that for every symmetricM ∈ Rd×d we

have Ĥt vechM = vech(Ĥ1/2
t MĤ

1/2
t ); using the language of elimination and duplication

matrices Abadir and Magnus [2005], we could write it explicitly as

Ĥt = Ld(Ĥ
1/2
t ⊗ Ĥ1/2

t )Dd.

However, no further manipulation of duplication matrices is required in the following.
1One could get rid of W by changing norm in (4) as follows:

arg min
c,A,B

n∑
t=2

∥∥∥vech
[
Ĥ
−1/2
t (yty

T
t − vech-1(c + Axt−1 + Bĥt−1))Ĥ−1/2

t

]∥∥∥ .
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We have now all the ingredients to restate (4) in vector form as
W 1/2Ĥ−1

2
ˆ̇h2

W 1/2Ĥ−1
3

ˆ̇h3
...

W 1/2Ĥ−1
n

ˆ̇hn

 θ̂`+1 =


W 1/2Ĥ−1

2 x2

W 1/2Ĥ−1
3 x3

...
W 1/2Ĥ−1

n xn


Forming normal equations, we obtain an explicit solution as θ̂`+1 = Q̂−1R̂, with

Q̂ = 1
n

n∑
t=2

ˆ̇hTt Ĥ−1
t W Ĥ−1

t
ˆ̇ht, R̂ = 1

n

n∑
t=2

ˆ̇hTt Ĥ−1
t W Ĥ−1

t xt.

In the scalar case (d = 1), the normal equations reduce to [Kristensen and Linton, 2006,
Equation 17].

3. Asymptotic properties

We use the symbols a.s.−→ and L−→ to denote almost sure convergence and convergence in
law, respectively. The following consistency and normality results hold.

Theorem 1 (consistency). Suppose that one step of the FGLS estimator is run with
initial values θ̂ such that θ̂ a.s.−→ θ, and that Assumptions 1–5 hold. Then, Q̂−1R̂

a.s.−→ θ.

Theorem 2 (normality). Suppose that one step of the FGLS estimator is run with ini-
tial values θ̂ such that θ̂ a.s.−→ θ, and that Assumptions 1–5 hold. Then

√
n
(
Q̂−1R̂− θ

) L−→

N(0, Q−1V Q−1), where V := Var
[
ḣTt H−1

t W vec(εtεTt − I)
]
and Q := E

[
ḣTt H−1

t WH−1
t ḣt

]
.

If the noise is Gaussian, a simpler expression for the asymptotic covariance holds.

Corollary 3. If the GARCH model is driven by innovations εt that are Gaussian and
independent, then V = 2Q and thus (under the previous assumptions)

√
n(Q̂−1R̂−θ) L−→

N(0, 2Q−1).

All proofs can be found in the Appendix. We note that the asymptotic variance of this
estimator is the same as that of the QML estimator, as provided in Comte and Lieberman
[2003]. This is an important observation, because it shows that the asymptotic efficiency
of the two is the same. However, the two estimators do not coincide for finite samples.

4. Numerical experiments
Here we evaluate the quality of the Feasible GLS estimator through a Monte Carlo
simulation. Restrictions on the matrices A, B, c are usually imposed since the number of
parameters in (1) might be very large when the dimension d of the GARCH increases.
In the numerical experiments we consider the so-called Diagonal VEC Bollerslev et al.
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[1988], which is a popular choice among practitioners (Chrétien and Ortega [2012]).
Other restrictions can be used in an analogous way. Indeed, the setup of embedding the
parameters in a vector θ and defining ht = ḣtθ makes it easy to adapt our results to
different parametrizations. In the Diagonal VEC case one assumes that the conditional
covariance matrix follows

Ht = C◦ +A◦ � (yt−1y
T
t−1) +B◦ �Ht−1, (6)

where � is the Hadamard (i.e., component-by-component) product. This is a special
case of (1) with A = diag[vech(A◦)], B = diag[vech(B◦)], c = vech(C◦). Assumption 5 is
then satisfied when the symmetric matrices C◦, A◦, B◦ as well as H1 are positive definite.

The FGLS refinement procedure in this case takes a simpler form, since there are less
parameters to estimate. Namely, we can set

θ =

vechC◦
vechA◦
vechB◦

 ,
(and θ̂ accordingly) and replace ˆ̇ht with

ˆ̇h◦t =
[
Id̄ diag(xt−1) diag(ĥt−1)

]
. (7)

Notice that ˆ̇h◦t is a subset of the columns of ˆ̇ht in the unrestricted case. Therefore both
the formulas for the FGLS estimator and the proofs continue to hold.
We simulate the Diagonal GARCH process as in (6) with three different sets of

parameter values and three different dimensions d = 2, 3, 4. The three sets of parameter
values have been generated as follows:

Model 1 (C◦)ij =
{

0.2 i = j

0.15 i 6= j
(A◦)ij =

{
0.15 i = j

0.1 i 6= j
(B◦)ij =

{
0.25 i = j

0.2 i 6= j,

Model 2 (C◦)ij =
{

0.2 i = j

0.15 i 6= j
(A◦)ij =

{
0.25 i = j

0.2 i 6= j
(B◦)ij =

{
0.35 i = j

0.3 i 6= j,

Model 3 (C◦)ij =
{

0.2 i = j

0.15 i 6= j
(A◦)ij =

{
0.35 i = j

0.3 i 6= j
(B◦)ij =

{
0.45 i = j

0.4 i 6= j.

We recall here that Assumption 2 for a diagonal GARCH translates to the fact that all
elements of A◦ +B◦ and of B◦ are between −1 and 1.

The number of parameters to estimate is 12, 18 and 30 respectively for d = 2, d = 3 and
d = 4. For each choice of parameter values, we chose n = 300, 600 and 1000 observations,
and simulated 1000 data sets for each of the 9 cases. For each generation, we estimate
and compare the performance of the three competitors by reporting the mean squared
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errors. In each of them, we ran 10 iterations of the feasible GLS estimator, and chose
among them the iterate that minimizes the error measure

1
n

n∑
t=1
‖xt − ht‖ .

The results are compared with those of the Closed Form estimator (CF) from Sbrana
and Poloni [2013] cited above, that we use as the initial value, and the Quasi-Maximum
likelihood (ML), using the implementation included in the MFE Toolbox Sheppard [2009].
The results are reported in Table 1.

The CF estimator clearly reports the worst performance compared to the other
alternatives. In particular, the CF estimator seems to be badly affected by the increase
of dimensionality and the increase in the spectral radius of A◦ +B◦ (as expected by the
convergence theory). On the contrary, the QMLE reports the best performance. This is
especially evident for larger values of ρ(A◦ +B◦) and also (but not so evidently) when
the number of variables increases. The GLS is the second best, closer to the MLE in
terms of performance. Indeed, for Model 1, QML and GLS report similar performance.
As for Model 2, the GLS still reports good performance and the results for C◦ and A◦
are close to those of the QML. On the other hand, the results of the GLS for B◦ seem to
degrade. Finally, for Model 3, the performance of the GLS is slightly better than those
reported in Model 1 and Model 2. However, the results for B◦ are still clearly worse than
those of the QMLE.

It should be noted that the GLS uses the CF estimator as starting value of the iterative
estimation. Therefore, when the initial values are far from the true ones, the GLS is
penalized. However, despite this issue, we can observe that, compared with the CF, the
GLS improves this initial value remarkably in terms of performance and seems to be
affected by neither the dimensionality nor the roots of A◦ +B◦.
In terms of computation time, the GLS is remarkably faster than the QML. Indeed,

it took us about one week to obtain the simulation results for the MLE in the case
d = 4, n = 1000 and only six hours for the GLS. Moreover, it took about about 4 days to
obtain the results for the QML in the case d = 4, n = 600 and only three hours for the
GLS. Hence, the QML is heavily affected by the curse of dimensionality and it would get
computationally unfeasible for matrices of dimension d > 5.

To sum up, the GLS might be either a good alternative to the QML when the roots of
A◦+B◦ are not too high, or it might be used as starting values in the QML optimization
routines.

5. Conclusions
Even on modern computers, estimating a multivariate GARCH model remains a chal-
lenging task. In this paper we propose a feasible generalized least squares estimator
for unrestricted multivariate GARCH(1,1) models. We prove that the estimator is con-
sistent and asymptotically normally distributed under mild assumptions. Unlike the
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Table 1: MSE of the parameters estimates. Each cell multiplied ×10−3 is the MSE
obtained in the simulations.

d=2 d=3 d=4
Model 1 CF GLS ML CF GLS ML CF GLS ML
n = 300 C◦ 5.6 7.4 7.1 4.3 6.3 5.1 4.0 5.4 3.0

A◦ 70.4 5.5 5.3 51.2 3.8 3.5 45.2 2.9 2.7

B◦ 61.3 40.9 91.3 61.5 37.4 65.8 58.1 35.1 46.6

n = 600 C◦ 5.0 7.3 2.6 4.2 2.8 2.7 2.5 2.3 1.2

A◦ 60.5 3.7 2.1 55.8 1.9 2.2 43.9 1.9 1.8

B◦ 61.3 39.9 37.9 57.3 28.1 24.8 42.7 26.4 21.5

n = 1000 C◦ 4.3 2.8 1.8 2.6 1.9 1.3 3.1 2.0 1

A◦ 44.5 1.7 1.1 48.4 1.3 0.8 42.2 0.9 0.6

B◦ 51.5 24.1 23.6 53.8 19.6 17.9 53.1 17.5 14.6

Model 2 CF GLS ML CF GLS ML CF GLS ML
n = 300 C◦ 16.4 7.5 4.1 17.2 5.5 2.8 21.6 4.4 2.5

A◦ 64.7 6.2 5.7 67.9 4.6 4.2 64.0 3.8 3.2

B◦ 68.2 37.2 28.7 77.3 34.3 20.8 91.5 27.8 18.0

n = 600 C◦ 11.0 5.2 2.5 14.7 3.8 1.2 15.9 2.7 1.3

A◦ 41.5 3.5 3.3 55.2 2.0 2.9 38.5 1.9 1.9

B◦ 49.4 24.6 16.0 68.4 20.2 11.4 82.7 16.8 7.6

n = 1000 C◦ 6.5 3.5 1.2 10.7 2.5 0.9 13.5 1.8 0.7

A◦ 25.2 2.1 1.5 46.9 1.5 1.1 47.4 1.04 0.8

B◦ 37.9 19.1 8.6 60.2 16.4 6.5 71.6 11.7 5.5

Model 3 CF GLS ML CF GLS ML CF GLS ML
n = 300 C◦ 103.8 18.4 4.1 149.2 12.3 3.1 102.3 8.1 4.4

A◦ 65.1 8.8 5.8 97.7 7.4 3.1 91.1 5.7 3.9

B◦ 87.4 35.4 16.0 108.4 27.7 4.2 130.5 25.6 10.8

n = 600 C◦ 71.8 11.1 2.9 110.2 8.3 1.7 91.8 6.7 1.9

A◦ 53.3 4.7 2.5 56.8 2.9 2.2 65.8 2.5 2.6

B◦ 65.7 25.3 6.5 114.1 17.0 5.5 126.5 13.4 5.3

n = 1000 C◦ 64.1 9.1 0.9 101.9 6.1 0.7 116.4 5.7 0.6

A◦ 27.7 2.2 1.8 45.9 1.1 1.2 58.7 1.2 1.2

B◦ 62.3 18.1 3.1 109.6 12.9 2.4 129.9 9.3 2.1
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quasi-maximum likelihood method, the feasible GLS is considerably fast to implement
and does not require any complex optimization routine.

The numerical experiments show that the quasi-maximum likelihood estimation proce-
dure still represents the best tool when both the dimension of the conditional covariance
matrices and that of the sample size are small. The GLS represents a second best with
respect to the QML, achieving similar performance in some of the tests, but in much
shorter time. Finally, the suggested estimator can also be employed as starting value in
the numerical maximization routines.
The main disadvantage of the suggested estimator is the lack of guarantees that the

resulting parameters yield a model satisfying the mentioned assumptions, as discussed in
the introduction; in particular, the estimated model may not be stationary or may have
conditional volatility matrices Ht that are not positive semidefinite.

A. Proofs
A.1. Boundedness of Ĥ−1

t
ˆ̇ht

Following the approach in Francq and Zakoïan [2010] for the univariate ARCH, as a
preliminary step we state this lemma, whose proof turns out to be more involved in the
multivariate case.
Lemma 4. Under Assumption 5,

∥∥∥Ĥ−1
t

ˆ̇ht
∥∥∥ = O(1) uniformly, for θ̂ → θ and for each

t = 2, 3, . . . , n.
Proof. Since C > 0, λmin(C) > 0, where λmin denotes the smallest eigenvalue. Moreover,
since the set Ω := {vech-1(x) : x ∈ Rd̄, ‖x‖ = 1 and vech-1(x) ≥ 0} is compact, the
function λmin(vech-1(Ax)) has a minimum mA on Ω. This minimum is strictly positive
thanks to Assumption 5. Similarly, mB := minx∈Ω λmin(vech-1(Bx)) > 0. Hence, if
Ĉ, Â, B̂ are close enough to their exact counterparts, then λmin(Ĉ) ≥ δ, mÂ ≥ δ, mB̂ ≥ δ
for a sufficiently small δ > 0.
We shall prove the stronger fact that

∥∥∥Ĥ−1
t

∥∥∥ ∥∥∥ˆ̇ht∥∥∥ = O(1). First of all, we wish to

replace
∥∥∥Ĥ−1

t

∥∥∥ with
∥∥∥Ĥ−1

t

∥∥∥. One has for each symmetric M∥∥∥Ĥ−1
t vech(M)

∥∥∥ =
∥∥∥vech(Ĥ−1/2

t MĤ
−1/2
t )

∥∥∥ ≤ ∥∥∥W−1/2
∥∥∥ ∥∥∥Ĥ−1/2

t MĤ
−1/2
t

∥∥∥
F

≤
∥∥∥W−1/2

∥∥∥ ∥∥∥Ĥ−1/2
t

∥∥∥2

F
‖M‖F ≤

∥∥∥W−1/2
∥∥∥ d̄ ∥∥∥Ĥ−1/2

t

∥∥∥2
‖M‖F

≤
∥∥∥W−1/2

∥∥∥ d̄ ∥∥∥Ĥ−1
t

∥∥∥ ‖M‖F ≤ ∥∥∥W−1/2
∥∥∥ d̄ ∥∥∥Ĥ−1

t

∥∥∥ ∥∥∥W 1/2
∥∥∥ ‖vech(M)‖

(we have used here the fact that ‖X‖F ≤
√
d̄ ‖X‖ for each d̄× d̄ matrix X), thus∥∥∥Ĥ−1

t

∥∥∥ ≤ ∥∥∥W−1/2
∥∥∥ ∥∥∥W 1/2

∥∥∥ d̄ ∥∥∥Ĥ−1
t

∥∥∥ .
Since

∥∥∥ˆ̇ht∥∥∥ =
√

1 + ‖xt−1‖2 +
∥∥∥ĥt−1

∥∥∥2
, it is sufficient to prove separately that∥∥∥Ĥ−1

t

∥∥∥ ≤ δ−1,
∥∥∥Ĥ−1

t

∥∥∥ ‖x̂t−1‖ ≤ δ−1,
∥∥∥Ĥ−1

t

∥∥∥ ∥∥∥ĥt−1
∥∥∥ ≤ δ−1.
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The first inequality follows from

Ĥt ≥ Ĉ ≥ λmin(Ĉ)I ≥ δI,

the second from

Ĥt ≥ vech-1(Âxt−1) = ‖xt−1‖ vech-1
(
Â

xt−1
‖xt−1‖

)
≥ ‖xt−1‖λmin

(
vech-1

(
Â

xt−1
‖xt−1‖

))
I ≥ ‖xt−1‖mÂI ≥ ‖xt−1‖ δI,

and the third is analogous.

A.2. An average bound on ht − ĥt and related results
Lemma 5. Under the previous assumptions, it holds almost surely that for n large

enough
(

1
n

∑
t

∥∥∥ĥt − ht∥∥∥2
)1/2

= O(θ̂ − θ).

Proof. To establish this result in an easier way, we take a digression to express the
GARCH recurrence in terms of matrices and vectors of dimension nd̄× nd̄. We set

h = 1√
n


h1
h2
...
hn

 , x = 1√
n


x1
x2
...
xn

 , c = 1√
n


h1
c
c
...
c

 ,

A =


0
A 0

A 0
. . . . . .

A 0

 , B =


0
B 0

B 0
. . . . . .

B 0

 .

Now we can rewrite the GARCH(1,1) model as

h = c + Ax + Bh

or
h = (Ind̄ −B)−1c + (Ind̄ −B)−1Ax.

We have

‖x‖2 = 1
n

n∑
t=1

d̄∑
i=1

(xt)2
i

a.s.−→ TraceE
[
xtx

T
t

]
,

thus ‖x‖2 ≤ 2 TraceE
[
xtx

T
t

]
= O(1) holds almost surely. Moreover,

‖c‖2 = 1
n

(‖h1‖2 + (n− 1) ‖c‖2) = O(1)
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By a continuity argument, using boundedness and the fact that ‖A‖ = ‖A‖ and
∥∥∥Bk

∥∥∥ =∥∥∥Bk
∥∥∥ for each k, one gets that∥∥∥ĥ− h

∥∥∥ =
∥∥∥(I − B̂)−1

(
ĉ + Âx

)
− (I −B)−1 (c + Ax)

∥∥∥ = O(θ̂ − θ).

From the previous result we can infer some additional results. Looking back at the
definition of ḣt, it is clear that this relation also implies(∑

t

1
n

∥∥∥ˆ̇ht − ḣt∥∥∥2
)1/2

= O(θ̂ − θ).

Since all norms are equivalent,
(∑

t
1
n

∥∥∥Ĥt −Ht

∥∥∥2
)1/2

= O(θ̂ − θ) holds as well. We also
have ∥∥∥Ĥ−1

t −H−1
t

∥∥∥ =
∥∥∥Ĥ−1

t (Ĥt −Ht)H−1
t

∥∥∥ ≤ ∥∥∥Ĥt
−1∥∥∥ ∥∥∥Ĥt −Ht

∥∥∥ ∥∥∥H−1
t

∥∥∥ ,
thus, since the Ĥt are bounded away from zero,(∑

t

1
n

∥∥∥Ĥ−1
t −H−1

t

∥∥∥2
)1/2

= O(θ̂ − θ). (8)

A.3. Consistency of Q̂

Theorem 6. Suppose that one step of the FGLS estimator is run with initial values θ̂
such that θ̂ a.s.−→ θ, and that Assumptions 1–5 hold. Then, Q̂ a.s.−→ Q.

Proof. We have almost surely

1
n

∑∥∥∥Ĥ−1
t

ˆ̇Ht,j −H−1
t Ḣt,j

∥∥∥ ≤ 1
n

∑∥∥∥Ĥ−1
t

∥∥∥ ∥∥∥ ˆ̇Ht,j − Ḣt,j

∥∥∥+∥∥∥Ĥ−1
t −H−1

t

∥∥∥ ∥∥∥Ḣt,j

∥∥∥ = O(θ̂−θ)
(9)

after applying the Cauchy-Schwarz inequality to both terms to reduce to the previously
established bounds.
The (i, j) entry of Q̂ is given by

1
n

tr
n∑
t=1

ˆ̇Ht,iĤ
−1
t

ˆ̇Ht,jĤ
−1
t . (10)

(compare the last expression with [Comte and Lieberman, 2003, Equation (A3)] and
Hafner and Herwartz [2008]). We use the triangle inequality and Cauchy-Schwarz to get

1
n

tr
∑∥∥∥ ˆ̇Ht,iĤ

−1
t

ˆ̇Ht,jĤ
−1
t − Ḣt,iH

−1
t Ḣt,jH

−1
t

∥∥∥ ≤ 1
n

tr
∑∥∥∥ ˆ̇Ht,iĤ

−1
t − Ḣt,iH

−1
t

∥∥∥ ∥∥∥ ˆ̇Ht,jĤ
−1
t

∥∥∥
+ 1
n

tr
∑∥∥∥Ḣt,iH

−1
t

∥∥∥ ∥∥∥ ˆ̇Ht,jĤ
−1
t − Ḣt,jH

−1
t

∥∥∥ = O(θ̂ − θ),
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since
∥∥∥ ˆ̇Ht,jH

−1
t

∥∥∥ = O(1) by Lemma 4.
Going back to the vectorized setting, this means that

1
n

∑(ˆ̇hTt Ĥ−1
t W Ĥ−1

t
ˆ̇ht − ḣTt H−1

t WH−1
t ḣt

)
= O(θ̂ − θ).

By consistency of θ̂,
∥∥∥θ̂ − θ∥∥∥ a.s.−→ 0, so Q̂ converges to the same limit as

1
n

∑
ḣTt H−1

t WH−1
t ḣt,

which equals Q by the law of large numbers.

The matrix Q is considered in [Comte and Lieberman, 2003, Appendix A], where it is
proved that it is equal to the asymptotic value of the Hessian matrix of the Gaussian
log-likelihood function, which coincides with the Fisher information matrix of the process.
Under our assumptions, the argument in [Comte and Lieberman, 2003, Appendix A] holds
verbatim and shows that it is nonsingular: essentially, if it had a zero eigenvector, then
we could identify a nontrivial linear relation that holds almost surely between c, Axt−1
and Bht−1, and use it to construct an alternative model of the GARCH, contradicting
identificability.

A.4. Consistency of the FGLS estimator
Proof of Theorem 1. After recalling that ht = ḣtθ and H−1

t (xt − ht) = vech(εtεTt − I),
we have

R̂− Q̂θ = 1
n

∑ ˆ̇hTt Ĥ−1
t W Ĥ−1

t xt −
1
n

∑ ˆ̇hTt Ĥ−1
t W Ĥ−1

t
ˆ̇htθ

= 1
n

∑ ˆ̇hTt Ĥ−1W
(
Ĥ−1
t −H−1

t

)
xt + 1

n

∑ ˆ̇hTt Ĥ−1W vech(εtεTt − I)

+ 1
n

∑ ˆ̇hTt Ĥ−1W
(
Ĥ−1
t

ˆ̇ht −H−1
t ḣt

)
θ.

(11)

We call S1, S2 and S3 the three terms of this sum. All of them converge to zero almost
surely: the first summand S1 because of (8) and Lemma 4; the second term S2 thanks to
the law of large numbers for martingale difference sequences Meyn and Tweedie [2009],
and S3 by (9) and Lemma 4 once again.
This shows that R̂− Q̂θ a.s.−→ 0, and thus also Q̂−1R̂

a.s.−→ θ, since Q̂ is asymptotically
nonsingular.

A.5. Normality of the FGLS estimator
Proof of Theorem 2. The key of the proof is once again the decomposition (11). The
terms

√
nS1 and

√
nS3 still converge almost surely to zero, thanks to the previous

convergence and boundedness results. The term
√
nS2 converges in law to N(0, V )

thanks to the central limit theorem for martingale difference sequences Meyn and Tweedie
[2009].
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Thus
√
n
(
R̂− Q̂θ

) L−→ N(0, V ). The factor Q̂−1, which converges a.s. to Q−1, gives
the two outer factors in the covariance.

A.6. Gaussian noise
Lemma 7. Suppose that the random variable ε follows a multivariate N(0, I) distribution.
Then,

Var
[
vech(εεT − I)

]
= 2W−1

Proof. The entries of this covariance matrix have the form E [(εiεj − δij)(εkεl − δkl)], with
δ denoting the Kronecker delta symbol. We divide into the following cases:

1. i 6= j and k 6= l, {i, j} 6= {k, l}: at least one of the components appears with
exponent 1, thus E [εiεjεkεl] = 0 by sphericity.

2. i 6= j and k 6= l, {i, j} = {k, l}: thus we are in the case E [(εiεj)(εiεj)] =
E
[
ε2i
]
E
[
ε2j

]
= 1.

3. i = j, k 6= l (or viceversa): E
[
(ε2i − 1)εkεl

]
= 0 by sphericity, since one among k

and l must differ from i.

4. i = j, k = l 6= i: E
[
(ε2i − 1)(ε2k − 1)

]
= E

[
ε2i
]
E
[
ε2j

]
− 1 = 0.

5. i = j = k = l: E
[
(ε2i − 1)(ε2i − 1)

]
= E

[
ε4i
]
−1 = 2, since the kurtosis of a Gaussian

variable is 3.

Hence, after checking which positions on the diagonal correspond to the case i = j = k = l
and which to the case i = k 6= j = l, we see that the required covariance matrix is
diagonal and

(
Var

[
vech(εεT − I)

])
ii

=
{

2 if i = j(j+1)
2 for some integer j,

1 otherwise.

Comparing this with the definition of W in (5), we obtain the desired result.

Proof of Corollary 3. The noise at time t, εt, is independent from Ht and ḣt, thus we
can compute the expected value of

V = E
[
ḣTt H−1

t W vec(εtεTt − I) vec(εtεTt − I)TWH−1
t ḣt

]
= E

[
ḣTt H−1

t W Var
[
vech(εεT − I)

]
WH−1

t ḣt
]

= 2Q.
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