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Abstract. We derive a new representation of Lagrangian subspaces in the form ImΠT
[

I
X

]
,

where Π is a symplectic matrix which is the product of a permutation matrix and a real orthogonal

diagonal matrix, and X satisfies |Xij | ≤
{
1 if i = j,√
2 if i �= j.

This representation allows us to limit ele-

ment growth in the context of doubling algorithms for the computation of Lagrangian subspaces and
the solution of Riccati equations. It is shown that a simple doubling algorithm using this representa-
tion can reach full machine accuracy on a wide range of problems, obtaining invariant subspaces of
the same quality as those computed by the state-of-the-art algorithms based on orthogonal transfor-
mations. The same idea carries over to representations of arbitrary subspaces and can be used for
other types of structured pencils.

Key words. Lagrangian subspace, optimal control, structure-preserving doubling algorithm,
symplectic matrix, Hamiltonian matrix, matrix pencil, graph subspace
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1. Introduction. A Lagrangian subspace U is an N -dimensional subspace of
C2N such that u∗Jv = 0 for each u, v ∈ U . Here u∗ denotes the conjugate transpose
of u and the transpose of u in the real case, and we set

J =

[
0 I
−I 0

]
.

The computation of Lagrangian invariant subspaces of Hamiltonian matrices of the
form

H =

[
F G
H −F ∗

]
with H = H∗, G = G∗, satisfying (HJ)∗ = HJ (as well as symplectic matrices
S, satisfying S∗JS = J), is an important task in many optimal control problems
[20, 31, 37, 43]. Traditionally, this computation takes the form of a matrix equation.
If we impose that the invariant subspace is represented through a graph basis, i.e.,

(1.1) U = Im

[
I
X

]
,

then the subspace is Lagrangian if and only if X is Hermitian. If this is the case, then
the problem of computing a Lagrangian invariant subspace can be transformed into
an algebraic Riccati equation

(1.2) 0 = H + FTX +XF −XGX,

∗Received by the editors October 10, 2011; accepted for publication (in revised form) by C.-H.
Guo May 15, 2012; published electronically July 26, 2012.

http://www.siam.org/journals/simax/33-3/85077.html
†Institut für Mathematik, MA 4-5, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany

(mehrmann@math.tu-berlin.de, poloni@math.tu-berlin.de). The first author’s work was partially
supported by DFG Research Center Matheon “Mathematics for key technologies” in Berlin. The
second author’s work was supported by the Alexander von Humboldt Foundation.

780

D
ow

nl
oa

de
d 

09
/1

3/
12

 to
 1

34
.5

8.
25

3.
55

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PERMUTED LAGRANGIAN GRAPH BASES 781

which can be solved with iterative methods such as the Newton method; see, e.g., [31,
37]. However, the Riccati equation approach may be a source of problems. In general,
given a basis for the Lagrangian subspace U ⊆ C2N ,

(1.3) U = ImQ, Q =

[
Q1

Q2

]
, Q1, Q2 ∈ C

N,N ,

the solution X of the Riccati equation is found by computing

(1.4) X = Q2Q
−1
1 .

If Q1 is singular, then the subspace cannot be represented at all in the form (1.1), and
if Q1 is ill-conditioned, then we end up with large errors in X . Furthermore, in this
case typically X has a very large norm and the sensitivity of the problem (1.2) may
be much larger than the conditioning of the underlying invariant subspace problem
[45].

Therefore, most current algorithms [6, 13, 37, 39] adopt another approach and
represent these subspaces via a basis of the kind (1.3) with Q1 �= I. From any basis
Q we can recover the Riccati solution X using (1.4), so the subspace approach has
a wider applicability than the Riccati approach, since it avoids performing explicitly
the inversion of Q1. This is beneficial in particular when the computation of X is
ill-conditioned but the application (such as computing an optimal feedback control)
is well-conditioned and does not require the Riccati solution but only requires the
subspace. This is particularly relevant in H∞ control [5, 7], where near the optimal
solution the Riccati solution typically fails to exist, while the Lagrangian subspace is
still well-defined.

Once we have decided to follow the subspace approach, the natural choice is
to choose Q in (1.3) to have orthogonal columns. Orthogonal bases and matrices
are ubiquitous in numerical analysis; their main advantage is that they offer perfect
(normwise) numerical backward stability in the sense of Wilkinson; see, e.g., [22].

However, the representation via orthogonal bases may also have some important
drawbacks.

• In the case of large-size control problems, we have robust and mature tech-
niques to solve the associated algebraic Riccati equation, such as the Newton-
ADI method [10, 42], relying on the strong singular value decay of X that is
present in many applications, but Q typically does not have the same property
and thus the subspace approach is not as effective.
• Working with orthogonal bases typically requires storing and updating the
2N ×N matrix Q rather than the N ×N (Hermitian) matrix X and is thus
more expensive. For instance, in a related setting that we describe in more
detail below, there is roughly a factor 8 difference between the cost of an
algorithm using orthogonal bases [4] and one using graph bases [14].
• Last but not least, the Lagrangian structure of the subspace may be hard
to preserve when working with orthogonal matrices. A basis Q spans a La-
grangian subspace if and only if Q∗

1Q2 = Q∗
2Q1. This property is very hard

to enforce exactly in finite precision arithmetic, and after accumulating many
successive orthogonal transformations, the Lagrangian property equality may
be heavily violated. This is a serious problem for numerical methods enforc-
ing this representation, such as the so-called Laub trick and later algorithms
relying on it [32, 39]. It is not clear how to enforce the Lagrangian property
while keeping the orthogonality when it is lost in finite precision arithmetic,
for instance with a projection after every step.
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A strictly related problem arises in a class of methods that has recently received
much attention, the so-called doubling-type algorithms [1, 3, 4, 14, 15, 28, 29, 34].
They are based on a suitable representation of H as a matrix pencil, and on the
use of pencil (or inverse-free) arithmetic [4], which is a tool to extend some basic
linear algebra operations to matrix pencils. As we see in the following, both the
problems of representing a matrix H with an equivalent matrix pencil and inverse-
free arithmetic are intimately related with the problem of representing subspaces that
we have mentioned above. Again, two main strategies are used: we can either choose
orthogonal representations, leading to the inverse-free sign (and disc) method [3, 4],
or impose the presence of identities and zero blocks in specified locations, leading to
the structure-preserving doubling algorithm [1, 14, 15, 29]. Similar to the subspace
setting, in the former case all the matrices are norm-bounded, but trouble arises
from loss of structure in the pencil, while in the latter the structure is preserved
exactly, but the price is the inversion of some matrices which may be ill-conditioned
along the algorithm. The authors have suggested a hybrid approach in [38], which
improves slightly the performance of the structure-preserving algorithms but still does
not perform as well as the Schur form based algorithms [6, 13, 39, 37] on the harder
benchmark problems [8, 9].

In this paper we suggest a modification of (1.1) as

(1.5) U = ImΠT

[
I
X

]
,

where Π is, up to sign changes, a permutation matrix, X = X∗, and the entries of
X are bounded in modulus by a small constant. Relying on a result of [19], we prove
that every Lagrangian subspace can be written as in (1.5). This representation pre-
serves the Lagrangian structure as (1.1), is numerically stable, and can be computed
efficiently.

Making use of this representation in doubling algorithms improves the numerical
accuracy of even the most simple algorithm of this family, allowing it to reach full
machine precision on a wide range of problems, obtaining invariant subspaces that
are both backward stable and exactly Lagrangian. Without this representation, in
contrast, the currently available doubling algorithms do not achieve this on all test
problems.

The paper is organized as follows. In section 2 we introduce some of the basic con-
cepts. In section 3 we describe how to obtain theoretically a bounded representation
of Lagrangian subspaces, generalizing similar results on unstructured subspaces. In
section 4 we describe an optimization procedure to compute in practice such represen-
tation for general, unstructured subspaces; this procedure is generalized in section 5 to
Lagrangian subspaces. In sections 6 and 7 we apply this result to the representation
of structured matrix pencils and to doubling algorithms, respectively. In section 8
we discuss the convergence and numerical stability of this approach, and in section 9
we test it with several numerical experiments. Finally, some conclusions and open
problems are presented in section 10.

2. Permutations, Plücker coordinates, and minors. In this section we in-
troduce some of the basic concepts that are needed to develop our new approach.

First, we introduce some notation. We denote by ek the kth column of the
identity matrix and by 0 and e the vectors whose elements are all zeros and all ones,
respectively. The sizes of said vectors can usually be inferred by the context and are
specified explicitly when needed. We denote by Ai,: the ith row of a matrix A and by
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A:,j its jth column. Given A ∈ CM,N and two ordered subsets I of {1, 2, . . . ,M} and
J of {1, 2, . . . , N}, we denote by AI,J the submatrix obtained by taking the rows and
columns of A specified by I and J , respectively. The notation Ī (resp., J̄ ) represents
the subset of all indices that do not belong to I (resp., J ), taken in an unspecified
order.

Let U ∈ CN+M,N , and let Π be a permutation matrix. Then we define Y Π ∈
CN,N , ZΠ ∈ CM,N , and whenever Y Π is nonsingular XΠ = [xΠ

i,j ] ∈ CM,N , as

(2.1) ΠU =

[
Y Π

ZΠ

]
, XΠ = ZΠ(Y Π)−1.

We then have the following characterization for the minors of XΠ .
Lemma 2.1. Let U ∈ CN+M,N , and let Π be a permutation such that Y Π is

nonsingular. Let XΠ
I,J be the square submatrix of XΠ = ZΠ(Y Π)−1 corresponding

to rows I = (i1, i2, . . . , ik) and columns J = (j1, j2, . . . , jk). Then, detXΠ
I,J =

detY P / detY Π , where P is the permutation such that

(2.2)

⎧⎪⎨⎪⎩
P (j�) = Π(N + i�),

P (N + i�) = Π(j�),

P (k) = Π(k) for all the other values of k = 1, 2, . . . , N +M .

Proof. Due to the specific choice of P , we have

(Y P (Y Π)−1)j,: =

{
XΠ

il,:
if j = jl for some �,

eTj otherwise.

Therefore, det Y P / detY Π = det Y P (Y Π)−1 = detXΠ
I,J .

The quantities detY Π enjoy the following properties.
Theorem 2.2. Let U ∈ CN+M,N have full column rank. Then, the following

assertions hold:
1. There exists a permutation Π such that detY Π �= 0.
2. If we replace U by UQ with a nonsingular matrix Q ∈ CN,N , then for all

permutations Π, the values of det Y Π are multiplied by a common factor
detQ.

3. The values of det Y Π for all possible Π uniquely characterize the subspace
ImU .

Proof. 1. Since U has full column rank, there must be at least one nonzero N×N
minor.

2. The claim follows from

ΠUQ =

[
Y ΠQ
ZΠQ

]
.

3. Choose a permutation Π such that det Y Π �= 0. Then all entries of XΠ are
uniquely determined, as (XΠ)i,j = detXΠ

(i),(j) by Lemma 2.1. Thus,

U = ΠT

[
I

XΠ

]
Y Π , ImU = ImΠT

[
I

XΠ

]
.

Up to row reordering, there are only
(
N+M

N

)
possible choices of Y Π , corresponding

to the possible subsets of N elements out of N +M . Their determinants form a set
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of projective coordinates for the subspace ImU , known in projective geometry as
Plücker coordinates [25]. Note that a canonical row ordering is needed to obtain a
well-defined set of Plücker coordinates and that different such orderings differ only by
a change of sign.

While Theorem 2.2 is a classical result in algebraic geometry [25], the following
result is not typically of interest in that field, although it is crucial here.

Theorem 2.3. Let U ∈ CN+M,N have full column rank. Then there exists
a permutation matrix Π such that Y Π (as in (2.1)) is nonsingular and we have
|xΠ

i,j | ≤ 1.

Proof. From part 1 of Theorem 2.2, it follows that | detY Π | �= 0 for at least one
Π . Choose any permutation Π for which | detY Π | is maximal. Then, by Lemma 2.1,
|xΠ

i,j | = | det Y P |/| detY Π | ≤ 1.
This result can be recast in the context of representations of subspaces in the

following way.
Corollary 2.4. Let U be an N -dimensional subspace of CN+M . Then, there

exists a permutation matrix Π and a square matrix XΠ such that

(2.3) U = ImΠT

[
I

XΠ

]
,

where the entries of XΠ satisfy |xΠ
i,j | ≤ 1.

It follows that a subspace can be represented with a basis that has an identity in
selected rows and norm-bounded (by 1) entries in the remaining ones. We call such a
form a permuted graph representation (PGR).

3. PGRs of Lagrangian subspaces. In this section we adapt the ideas of
the previous section to obtain norm-bounded structure-preserving representations of
Lagrangian subspaces.

Let IN := {0, 1}N . For each v ∈ IN , we define a symplectic swap matrix as an
orthogonal symplectic matrix given by

Πv :=

[
diag(v̂) diag(v)
− diag(v) diag(v̂)

]
,

where v̂ is the vector with v̂i = 1− vi.
Multiplication with the matrices Πv permutes (up to a sign) the entries of a

vector, with the limitation that the ith row of a vector may only be exchanged with

the (N + i)th. Notice that J = Πe with e =
[
1 1 · · · 1

]T
. We denote by S2N

the set of all 2N symplectic swap matrices of size 2N . For U ∈ C
2N,N and Π ∈ S2N ,

we define Y Π , ZΠ and (whenever Y Π is nonsingular) XΠ by the formulas in (2.1).
In the following we will make frequent use of the next result, which is a direct

consequence of a theorem in [19].
Theorem 3.1. If the columns of U ∈ C2N,N span a Lagrangian subspace, then

there exists Π ∈ S2N such that Y Π (as in (2.1)) is nonsingular.
Proof. Let U = QR be an economy-sized QR factorization (see, e.g., [22]) of U

with Q partitioned as in (1.3). Since U has full column rank, R is nonsingular. The
columns of Q still span a Lagrangian subspace; therefore Q∗

1Q2 = Q∗
2Q1. This implies

that [
Q1 −Q2

Q2 Q1

]D
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is orthogonal and symplectic. Let I ⊆ {1, 2, . . . , N} be a maximally independent set
of rows of Q1. Then [19, Theorem 3.1] implies that

Q̂ =

[
(Q1)I,:
(Q2)Ī,:

]
is a nonsingular N ×N matrix. If we take v ∈ IN with

vi =

{
0, i ∈ I,
1, i �∈ I,

then with the associated swap matrix Πv it follows that Y Πv = Q̂R, which is nonsin-
gular.

Lemma 3.2. For U ∈ C2N,N the following are equivalent:
1. The subspace ImU is Lagrangian.
2. There exists Π ∈ S2N such that Y Π is nonsingular and XΠ is Hermitian.
3. There exists Π ∈ S2N such that Y Π is nonsingular, and for all swap matrices

Π with this property, XΠ is Hermitian.
Proof. The implication 1 ⇒ 3 follows directly from Theorem 3.1, and 3 ⇒ 2 is

obvious. 2⇒ 1. If Im
[

I
XΠ

]
is Lagrangian and ΠT is symplectic, then it follows that

ImU = ImΠT
[

I
XΠ

]
is Lagrangian as well.

Therefore, every Lagrangian subspace admits at least one representation as Im
ΠT
[

I
XΠ

]
. We call the pair (XΠ , Π) a permuted Lagrangian graph representation.

Note that in [19] a related object was called complementary basis representation.
The 2N injective maps

fΠ : X �→ ΠT

[
I
X

]
form an atlas for the Lagrangian Grassmannian, i.e., the variety of Lagrangian sub-
spaces, and are a means to obtain a structure-preserving parametrization of these
subspaces.

A result similar to Lemma 2.1 holds for symplectic swap matrices with an impor-
tant restriction on the allowed index sets, I = J .

Lemma 3.3. Let U ∈ C2N,N be given and let Π ∈ S2N , constructed from a vector
v ∈ IN , be such that Y Π is nonsingular. Moreover, let XΠ

I,I be the principal submatrix

of XΠ corresponding to rows and columns I = (i1, i2, . . . , ik) and let P ∈ S2n be
constructed from a vector w that differs from v only in positions i1, i2, . . . , ik. Then,
detXΠ

I,I = ± detY P / detY Π .
Proof. Due to the choice of P , we have

(Y P (Y Π)−1)i,: =

{
±XΠ

il,:
if i = il for some �,

eTi otherwise.

Therefore, det Y P / detY Π = det Y P (Y Π)−1 = ± detXΠ
I,I.

With these preliminaries we are able to obtain a bound on the elements of a
particular XΠ .

Theorem 3.4. For every Lagrangian subspace U = ImU ⊂ C2N , there exists
Π ∈ S2N such that Y Π is nonsingular and

(3.1) |xΠ
i,j | ≤

{
1 if i = j,√
2 if i �= j.
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Proof. Choosing Π ∈ S2N such that | detY Π | is maximal, this determinant is
nonzero, because of Theorem 3.1. For the diagonal entries, we have directly from
Lemma 3.3 that

|xΠ
i,i| = ± detY P / detY Π ≤ 1.

For the off-diagonal entries, we obtain∣∣∣∣∣det
[
xΠ
i,i xΠ

i,j

xΠ
j,i xΠ

j,j

]∣∣∣∣∣ = ± detY P / detY Π ≤ 1.

Using the triangle inequality, we then have |xΠ
i,j |2 = |xΠ

i,jx
Π
j,i| ≤ 1 + |xΠ

i,i||xΠ
j,j |

≤ 2.
The bound (3.1) is sharp, as is shown by the Lagrangian subspace spanned by

the columns of

U =

⎡⎢⎢⎣
1 0
0 1

1
√
2√

2 1

⎤⎥⎥⎦ .
4. Computing bounded PGRs of unstructured subspaces. In this section

we discuss the numerical computation of bounded PGRs of unstructured subspaces.
The problem has been widely studied in the past, especially in connection with rank-
revealing factorizations [16, 23, 30, 40]. We report here some results with the goal
of making the generalization to Lagrangian subspaces in the next section easier to
understand.

First, we describe how to convert different representations of the form (2.3) one
into another.

Lemma 4.1. Let (XΠ , Π) be a PGR of the subspace U = ImU , let I =
(i1, i2, . . . , ik), J = (j1, j2, . . . , jk) be given, and define the permutation P as in (2.2).
Set for brevity X := XΠ . Then, Y P (as in (2.1)) is nonsingular whenever XI,J is
nonsingular, and when this property holds, then XP is given by

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(XP )Ī,J̄ =XĪ,J̄ −XĪ,JX−1

I,JXI,J̄ ,

(XP )Ī,J =XĪ,JX−1
I,J ,

(XP )I,J̄ =−X−1
I,JXI,J̄ ,

(XP )I,J =X−1
I,J .

Proof. Let eI =
[
ei1 ei2 · · · eik

]
and eJ =

[
ej1 ej2 · · · ejk

]
. By permut-

ing rows according to the definition of P , we get the identity

U(Y Π)−1 = ΠT

[
I
X

]
= PT

[
I − eJ eTJ + eJ eTIX

X − eIeTIX + eIeTJ

]
.

Therefore,

(4.2)
XP = (X − eI(eTIX − eTJ ))(I − eJ (eTJ − eTIX))−1

= X + (eI +XeJ )X−1
I,J (eTJ − eTIX),

where the second equality follows from the application of the Sherman–Morrison–
Woodbury (SMW) formula for the inversion. Using this representation, we can verify
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(4.1) for each entry (i, j) by considering separately the four cases according to whether
i ∈ I and whether j ∈ J .

Using the SMW formula as in (4.2) is suggested in [23]. Note, however, that
when ‖XI,J ‖ is large, then (4.2) suffers from subtractive cancellation, while (4.1)
only relies on X−1

I,J and thus is expected to be more stable. This case is especially

relevant, since our typical use for this result will be with X−1
I,J as the 1 × 1 matrix

containing the largest (in modulus) element of X . The computational cost of (4.1) is
about 2N2k + o(N2) floating point operations.

We wish to compute an elementwise-bounded permuted graph basis for a given
subspace using these cheap updating formulas. In the existence proofs, we have con-
sidered the permutation Π∗ that maximizes | detY Π |. However, computing this Π∗ is
not feasible in the general case, as it is an NP-hard problem [16]. On the other hand,
the condition |xΠ

ij | ≤ 1 is weaker. From the proof of Theorem 2.3, we see that it is suf-
ficient for Π to correspond to a local maximum of the determinant, i.e., by restricting
to the permutations P that differ from Π by at most one transposition. Moreover, the
argument used there can be easily transformed into a monotonic ascent algorithm. If
|xΠ

ij | > 1, then this means that | detY P | > | detY Π |; thus we can find a permutation
P yielding a larger objective function than Π . This procedure will necessarily termi-
nate in a local maximum. A second modification that will prove beneficial is relaxing
the condition |xΠ

ij | ≤ 1 to |xΠ
ij | ≤ T for some T > 1. These ideas lead to Algorithm 1.

Algorithm 1. Computation of a bounded PGR.

Input: U ∈ CN+M,N of full rank, a threshold value T > 1, an initial guess for
Π such that detY Π �= 0 (where Y Π is as in (2.1)).

Output: A PGR (Π,XΠ) with |xΠ
i,j | ≤ T for all i, j.

1 Compute XΠ = ZΠ(Y Π)−1;
2 repeat
3 let M = max |xΠ

i,j |, attained at (̂ı, ĵ);

4 if M > T then
5 compute P using (2.2) with I = (̂ı), J = (ĵ);
6 (this amounts to exchanging the values of Π(N + ı̂) and Π(ĵ))

7 compute XP using (4.1);

8 (XΠ , Π)← (XP , P );

9 end

10 until M ≤ T ;

11 Optionally (for increased accuracy): keep Π , but recompute XΠ from U if the
above loop took many steps;

The algorithm costs 8/3N3+2N2ξ+o(N3), where ξ is the number of optimization
steps to be performed, plus an additional 8/3N3 if XΠ is recomputed at the end. To
evaluate the cost, it is thus important to estimate the number of optimization steps
and to provide a good initial guess Π . For the following well-known result we present
a proof that we can later generalize to the Lagrangian case.

Theorem 4.2 (see [30]). Let U ∈ CN+M,N be of full rank, and let Π∗ be such that
| detY Π∗ | = maxΠ | detY Π |. Moreover, let Π0 be the initial guess used in Algorithm 1.

1. Then in Algorithm 1 at most ξ = logT |detY
Π∗

detY Π0
| steps are needed.

2. If Π0 is the permutation returned by the QR factorization with column pivot-
ing [22, section 5.5.6] of U∗, then ξ ≤ N

2 logT N .
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Proof. 1. At every step, | det Y P |/| detY Π | = |xΠ
i,j | > T , so in each step the

determinant increases by at least a factor T .
2. For the QR factorization Π0U = R∗Q∗, by construction |Ri,j | ≤ |Ri,i| for

each j. (Otherwise, the jth column rather than the ith would be selected by the
pivoting procedure at the ith factorization step.) Therefore, if R = [rij ] and if we
set D = diag(r1,1, r2,2, . . . , rN,N ), then D−1R has all its entries bounded by 1. In
particular, every N × N submatrix S of D−1R has entries bounded in modulus by
1. Hence, by the Hadamard determinant bound [11], we have | detS| ≤ NN/2. Since
(Y Π0Q)∗ is the upper triangular matrix formed by the first N columns of R, it has

determinant
∏N

i=1 ri,i = detD. On the other hand, we can choose the submatrix S
in the above argument so that (Y Π∗Q)∗ = DS, since Y Π∗ is a submatrix obtained by

choosing a suitable subset of rows of U . Thus we obtain |detY Π∗
detY Π0

| ≤ NN/2, and the
assertion follows.

The estimate in Theorem 4.2 is often fairly pessimistic, but nevertheless it shows
that we can obtain a worst-case complexity ofO(N3 logN) if T is chosen to be constant
and O(N3) if we allow T to grow moderately with N (e.g., T = N1/3). Moreover,
when we use this procedure at every step of a doubling algorithm as in the presented
algorithms below, then a good starting guess for Π will be available in every iteration
after the first. Note that the QRP factorization can be reused as a method to invert
Y Π in line 1 of the algorithm and thus does not increase the total cost of the algorithm.
Note further that the procedure in Algorithm 1 resembles the basic “complementary
tableaux” implementation of the simplex method [17].

5. Computing bounded PGRs of Lagrangian subspaces. Since symplectic
swap matrices are essentially permutations (up to some sign changes), Lemma 4.1
needs only minor changes for the Lagrangian case.

Lemma 5.1. Let (XΠ , Π) be a PGR of the Lagrangian subspace U = ImU ,
let I = (i1, i2, . . . , ik) be given, and let P be the symplectic swap matrix defined in
Lemma 3.3. Set for brevity X := XΠ . Then, Y P (as in (2.1)) is nonsingular whenever
XI,I is nonsingular. Furthermore, when this property holds, then XP is given by

(5.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(XP )Ī,Ī =XĪ,Ī −XĪ,IX

−1
I,IXI,Ī,

(XP )Ī,I =XĪ,IX
−1
I,I ,

(XP )I,Ī =X−1
I,IXI,Ī ,

(XP )I,I =−X−1
I,I.

The computational cost of this formula is about N2k + o(N2) floating point op-
erations, since we can exploit that X and XP are Hermitian.

The analogue of Algorithm 1 in this setting is Algorithm 2, which is slightly more
complicated, due to the fact that we need to consider a threshold TD for the diagonal
entries and another TO for the off-diagonal ones.

If U spans a Lagrangian subspace, then the first computed value of XΠ should
be Hermitian. This property can fail only due to numerical errors in the given U or in
the computation, so we can safely enforce it by projecting it to the nearest Hermitian
matrix via X ← X+X∗

2 . The cost of the algorithm is about 5/3N3 + N2ξ + o(N3),
where ξ is the sum of all values of |I| along the iteration—essentially, we add 1 for

each step in which I = (k̂) and 2 for each step with I = (̂ı, ĵ).
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Algorithm 2. Computation of a bounded permuted Lagrangian graph repre-
sentation of a Lagrangian subspace.

Input: U ∈ C2N,N of full rank spanning a Lagrangian subspace, thresholds
TD > 1, TO >

√
1 + T 2

D, an initial guess for Π such that detY Π �= 0.
Output: A permuted Lagrangian graph representation (Π,XΠ) satisfying

|xΠ
k,k| ≤ TD and |xΠ

i,j | ≤ TO for all i �= j.

1 Compute XΠ = ZΠ(Y Π)−1;
2 repeat
3 let MO = max |xΠ

i,j |, i �= j, be attained at (̂ı, ĵ);

4 let MD = max |xΠ
k,k|, be attained at (k̂, k̂);

5 if MD > TD then Set I = (k̂);
6 else if MO > TO then Set I = (̂ı, ĵ);
7 compute P as in Lemma 3.3;
8 (this amounts to exchanging one or two entries in v such that Π = Πv)

9 compute XP using (5.1);

10 (XΠ , Π)← (XP , P );

11 until MO ≤ TO, MD ≤ TD;

12 Optionally (for increased accuracy): keep Π , but recompute XΠ from U if the
above loop took many steps;

In order to obtain a good starting guess for Π , we propose here a modification of
the QR factorization with column pivoting, where we use a symplectic swap matrix
instead of a permutation. The factorization is described in Algorithm 3.

Algorithm 3. QRΠv factorization of a N × 2N matrix.

Input: M ∈ CN,2N .
Output: Q ∈ CN,N orthogonal, R(1), R(2) ∈ CN,N such that R(1) is a column

permutation of an upper triangular matrix, Πv ∈ S2N such that
U∗ = Q

[
R(1) R(2)

]
Πv.

1 Set C = {1, 2, . . . , 2N} (it will be the set of “available” column indices at each
step);

2 for k = 1, 2, . . . , N do
3 compute p ∈ C such that ‖Mk:N,p‖ is maximal;
4 M ← QkM , where Qk is a Householder matrix that zeroes out M(k+1):N,p

if p > N then M ←MΠk, where Πk ∈ S2N swaps the pth and (p−N)th
columns);

5 C ← C \ {p, p±N};
6 end

7 Set
[
R(1) R(2)

]
= M , Q =

∏
Qk, Πv =

∏
Πk (the two products can be

accumulated along the algorithm);

Since S2N does not contain all permutations, we have to settle for a slightly
more general form in R, namely, that its first N columns R(1) can be permuted to
form an upper triangular matrix. At each step, we choose the “available” column of
largest norm, permute it to the first N columns if necessary, and then apply a usual
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Householder transformation that zeroes out its bottom entries. After each step, we
have to remove from the set of “available” columns not only the used one p, but also
the column p+N or p−N , since this column cannot end up in R(1) at the same time
as p due to the special structure of symplectic swap matrices.

With this algorithm, we can prove a symplectic analogue of Theorem 4.2.
Theorem 5.2. Let the columns of U ∈ C2N,N span a Lagrangian subspace, let

Π∗ be such that | detY Π∗ | = maxΠ | detY Π |, and let Π0 be the initial guess used in
Algorithm 2.

1. The number ξ of optimization steps in Algorithm 2 satisfies ξ ≤ logτ
detY Π∗
detY Π0

,

where τ = min{TD,
√
T 2
O − T 2

D}.
2. If Π0 is the permutation returned by applying Algorithm 3 to U∗, then ξ ≤

3N logτ N +N logτ 18.
Proof. 1. In each step when MD > TD, | detY Π | increases by a factor TD, and

in each step when MD ≤ TD,MO > TO by a factor

|xi,ixj,j − xi,jxj,i| ≥ |xi,jxj,i| − |xi,ixj,j | = |xi,j |2 − |xi,i||xj,j | ≥ T 2
O − T 2

D.

(Here we use the facts that xj,i = xi,j and |xi,i| ≤ TD for all i, since we check the
condition on the diagonal entries first.) Since each step dealing with off-diagonal
elements is counted as an increase of ξ by 2, we get the square root.

2. We use the same strategy as in point 2 of Theorem 4.2; namely, we prove that
the determinant of every N ×N submatrix of U (and in particular Y Π∗) is bounded
by an exponential term times | detY Π0 |.

Denote by triu(A) the upper triangular part of a matrix A (including its diagonal)
and by tril(A) the lower triangular part (excluding the diagonal, so that the identity
A = triu(A) + tril(A) holds).

We may assume without loss of generality that the pivots chosen in the algorithm

are exactly (1, 2, . . . , N) (otherwise, we reorder columns in U∗). With R(k) = [r
(k)
ij ],

k = 1, 2, by setting

diag(r
(1)
1,1, r

(1)
2,2, . . . , r

(1)
N,N)−1

[
R(1) R(2)

]
=:
[
T (1) T (2)

]
,

we obtain that T (1) is unit upper triangular. The pivoting procedure ensures that
the elements of both T (1) and M := triu(T (2)) are bounded in modulus by 1. No
elementwise bound can be inferred directly on L := tril(T (2)), though, and this makes
the proof more involved than the unstructured case of Theorem 4.2.

Nevertheless, since the starting subspace ImU is Lagrangian, it follows that
T (2)T (1)∗ is symmetric, and this can be translated into a different bound for L. Using

LT (1)∗ + tril(MT (1)∗) = tril((L+M)T (1)∗) = tril(T (1)(L+M)∗) = tril(T (1)M∗)

we get

LT (1)∗ = tril(T (1)M∗ −MT (1)∗)

and thus the matrix

T (2)T (1)∗ = tril(T (1)M∗ −MT (1)∗) +MT (1)∗

must have all its elements smaller than 3N in modulus. Let us now consider any
N × N submatrix S of

[
T (1) T (2)

]
. We may choose

[
T (3) T (4)

] ∈ CN,2N as a
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suitable column permutation of
[
IN 0N

]
, so that the matrix

T =

[
T (1) T (2)

T (3) T (4)

]
has determinant equal to ± detS. The 2N × 2N matrix

T̃ =

[
T (1) T (2)

T (3) T (4)

] [
T (1)∗ 0

0 T (1)∗

]
has every entry smaller in modulus than 3N . Thus, by the Hadamard bound [11],
| det T̃ | ≤ (3N)2N (2N)2N/2 = 18NN3N . Since detT (1) = 1, we get | detS| =

| detT | = | det T̃ | ≤ 18NN3N . One of the possible choices for S is diag(r
(1)
1,1 , r

(1)
2,2, . . . ,

r
(1)
N,N)−1Q∗(Y Π∗)∗; in this case,

18NN3N ≥ | detS| = | detY
Π∗ |

|∏ ri,i| =
| detY Π∗ |
| detY Π0 | .

We stress once again that these bounds are usually pessimistic, and in practice
the number of iterations that we encountered was always low, in particular due to
the initial guess for Π available in many situations; see section 9 for some numerical
examples.

6. PGRs of matrix pencils. In the context of computing eigenvalues and
invariant subspaces, matrix pencils are usually considered up to right equivalence, i.e.,
up to the equivalence relation defined by

sE1 −A1 ∼ sE2 −A2

with E1 = ME2, A1 = MA2 for a nonsingular square matrix M . We may interpret
this equivalence in terms of subspaces by saying that we are interested not in the
matrix

[
ET

AT

]
but rather in the subspace Im

[
ET

AT

]
. Therefore, our results on the

representation of subspaces may be adapted to the representation of pencils up to
right equivalence. Our main motivation stems from the representation of regular
symplectic pencils, i.e., regular pencils sE−A satisfying EJE∗ = AJA∗ for which we
have the following theorem.

Theorem 6.1. Let sE − A with E,A ∈ C2n,2n be a regular symplectic pencil.
Then, there exist Π1, Π2 ∈ S2n such that

(6.1) sE −A ∼ s

[
I X11

0 X21

]
Π1 −

[
X12 0
X22 I

]
ΠT

2 ,

where

XΠ =

[
X11 X12

X21 X22

]
is Hermitian and satisfies (3.1).

Proof. Partitioning the pencil as E =
[
E1 E2

]
, A =

[
A1 A2

]
, where all blocks

are 2n× n, we can rewrite the condition EJE∗ = AJA∗ as

(6.2)
[
E1 A2 E2 A1

]⎡⎢⎢⎣
0 0 I 0
0 0 0 I
−I 0 0 0
0 −I 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
E∗

1

A∗
2

E∗
2

A∗
1

⎤⎥⎥⎦ = 0.D
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Moreover,
[
E1 A2 E2 A1

]
is of full row rank, since otherwise one could find a

nonzero vector w such that
[
E1 A2 E2 A1

]∗
w = 0, i.e., w∗E = w∗A = 0, which

would contradict the regularity assumption.
Therefore, the columns of

[
E1 A2 E2 A1

]∗
span a Lagrangian subspace of

C2N with N = 2n, and from Theorem 3.4 we obtain a PGR

(6.3) Πv

⎡⎢⎢⎣
E∗

1

A∗
2

E∗
2

A∗
1

⎤⎥⎥⎦ =

[
I

XΠ

]
(Y Π)−1.

Note that Πv acts separately on the block columns (1, 3) as well as (2, 4), so these
actions are given by Π1 = Πv1 and Π2 = Πv2 , where v =

[
v1
v2

]
. After reshuffling the

blocks, we obtain (6.1).
The representation (6.1) with Π1 = Π2 = I is well-known; see, e.g., [36, 37, 41],

where the representation

sE −A = s

[
I G
0 F ∗

]
−
[
F 0
H I

]
with H = H∗, G = G∗ is used. However, without the further permutations the bound-
edness of the matrices cannot be guaranteed and this may lead to ill-conditioning in
numerical methods.

Similarly for Hamiltonian pencils, i.e., pencils satisfying EJA∗ + AJE∗ = 0, or,
equivalently,

(6.4)
[
E1 E2 A2 −A1

]⎡⎢⎢⎣
0 0 I 0
0 0 0 I
−I 0 0 0
0 −I 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

E∗
1

E∗
2

A∗
2

−A∗
1

⎤⎥⎥⎦ = 0,

we have that Im
[
E1 E2 A2 −A1

]∗
is Lagrangian and sE − A is equivalent to

sẼ − Ã with[
Ẽ1 Ã2

]
=

[
I X11

0 X12

]
Π1,

[−Ã1 Ẽ2

]
=

[
X21 0
X22 I

]
Π2, XΠ =

[
X11 X12

X21 X22

]
,

where XΠ is Hermitian and elementwise bounded as in (3.1). Again, the case Π = I
gives the well-known representation sI − H, where HJ is Hermitian (i.e., H is a
Hamiltonian matrix ).

7. PGRs and doubling algorithms. In this section we discuss doubling al-
gorithms for the computation of the stable deflating subspace of a symplectic pencil.
These methods are based on the following result.

Theorem 7.1 (see [3]). Let sE − A with E,A ∈ CN,N be a regular pencil, and

let Ẽ, Ã ∈ CN,N be such that

(7.1) ẼA = ÃE, Rank
[
Ẽ Ã

]
= N.

Then, the pencil sẼE − ÃA has the same deflating subspaces as sE − A, and its
eigenvalues are the squares of the corresponding eigenvalues.
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If in Theorem 7.1 the matrices E and Ẽ are invertible, this result is simple, as
(E−1A)2 = (ẼE)−1(ÃA). However, it provides an extension of the squaring operation
to matrix pencils that is well-defined and can be applied also when E is singular or
ill-conditioned. By iterating the above transformation and scaling to avoid element
growth, the eigenvalues of the pencil are squared at each iteration and thus the eigen-
values inside the unit disk converge to 0 and the ones outside the unit disk converge
to ∞. If there are no eigenvalues of modulus 1, then after a sufficient (not too large)
number of steps, it is easy to recover the corresponding invariant subspaces associated
with the eigenvalues inside and outside the unit disk, respectively, as kernels of the
two coefficients of the pencil.

The inverse-free disc function method [3] performs this doubling iteration by
choosing [Ẽ Ã] with orthonormal rows, i.e., it computes a QR decomposition

(7.2)

[
Q11 Q12

Q21 Q22

] [
A
E

]
=

[
R
0

]

and takes Ẽ = −Q21, Ã = Q22. The Lagrangian property of the resulting subspace
is not enforced and may be lost in finite precision arithmetic during the iteration. In
other words, the algorithm is not structure-preserving with respect to the Lagrangian
structure. The structure-preserving doubling algorithm (SDA) [14] is based instead
on the version Π = I of the representation (6.1). At each step, the method uses a
pencil of the form

(7.3) E =

[
I X11

0 X21

]
, A =

[
X12 0
X22 I

]

and chooses Ẽ and Ã having blocks I and 0 in the same position, and thus this
structure is maintained in the products ẼE and ÃA. The resulting pencil is then
symplectic if and only if the matrix X is Hermitian, and this can be easily enforced
at every step. Matrices Ẽ and Ã with the required block structure can be found
by inverting a suitable matrix, which is often well-conditioned but may approach
singularity in some cases [28]. As an additional advantage of having these prescribed
identity blocks, these methods have a lower computational cost than the ones in the
inverse-free methods, as the latter require building and factorizing a 4n× 4n matrix
rather than working directly with its n× n blocks.

A doubling variant that enforces a hybrid representation is presented in [38], in
order to deal with the cases in which the representation (7.3) is a poor choice. A block
structure similar to (7.3) is used, but the identities are replaced by general matrices in
order to maintain orthonormal bases for the first block row of E and the second of A.
The algorithm works better than the classical SDA for those problems in which the
representation (1.1) is a poor choice, but this new variant is not structure-preserving
and still needs the inversion of a matrix at each step that may be ill-conditioned.

In view of these observations, it seems natural to study the combination of the
ideas in the structure-preserving doubling algorithm with the idea of enforcing a
bounded PGR at every step to achieve added stability. Given a pencil sE −A and a
bounded PGR [

A
E

]
= ΠT

[
I

XΠ

]
Y Π ,
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we can compute Ẽ, Ã with bounded entries thanks to the relation

(7.4)
([−XΠ I

]
Π
)
ΠT

[
I

XΠ

]
= 0.

The resulting complete procedure is presented in Algorithm 4.

Algorithm 4. Doubling algorithm with bounded PGR.

Input: A symplectic pencil sE −A.
Output: A basis for its invariant subspace associated with the eigenvalues

inside the unit disk.
1 while a suitable stopping criterion is not satisfied do

2 Compute an optimal (Π,XΠ) for the subspace

[
A
E

]
using Algorithm 1. At

each step after the first, warm-start with the Π from the previous
iteration;

3 Set
[
Ã −Ẽ

]
=
[−XΠ I

]
Π ;

4 Form the products E ← ẼE, A← ÃA ;

5 Compute an optimal (Π,XΠ) associated to the symplectic pencil sE −A
as in (6.3) with Algorithm 2 (warm-started);

6 Symmetrize XΠ ← XΠ+(XΠ)∗

2 to reduce the impact of numerical errors;

7 Using the computed (Π,XΠ), replace the computed sE − A with the
right-equivalent pencil in (6.1);

8 end

9 return U = ker
[
X22 I

]
ΠT

2 = Π2

[
I
−X22

]
;

After each time lines 5 and 7 are executed, each single entry of X (and thus of
E and A) is bounded above by the chosen threshold TO, and after each time line 2
is executed, each entry of XΠ (and thus of Ẽ and Ã) is bounded above by T . Each
entry of the product in line 4 is therefore bounded as well by 2nTTO.

The computational cost of Algorithm 4 is (83N
3+2N2ξ1)+(53N

3+N2ξ2)+2N3 =
19
3 N

3+N2(2ξ1+ξ2)+o(N3) floating point operations per step, where ξ1 and ξ2 are the
numbers of used optimization steps. This compares with 11N3+ o(N3) for QR-based
doubling and 4

3N
3 + o(N3) for a symmetry-preserving implementation of SDA. The

number of outer steps needed is comparable, as the convergence speed is related to
the eigenvalues of the pencil, which are the same for all three variants. As a stopping
criterion in Algorithm 4, we can use the variation in XΠ after each step.

It is an interesting observation that we can recover SDA both for Riccati equations
(called SDA-I in [34]) and for unilateral matrix equations (called SDA-II in [34] and
cyclic reduction in the queuing theory and matrix equations literature) by choosing
specific values of Π in lines 2 and 5, rather than running the optimization loop to
obtain optimal ones. Thus, in some sense, we can now recognize them as two out of
2N variants of the same algorithm, and we are free to switch among all these variants
at every step to choose the most numerically stable one.

Algorithm 4 in this form is, however, still unsatisfactory, because it does not man-
age to go from a PGR matrix XΠ for sE−A to one for sẼE− ÃA using only matrix
operations that map exactly between Hermitian matrices, but one has to enforce the
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Hermitian property explicitly in the last instruction in the while cycle. The task of
finding a symmetry-preserving version of the update formulas is open. Such a method
could lower the computational cost to match that of the similar SDA. Nevertheless,
we show below that this preliminary version gives very good computational results.

8. Convergence and stability issues. From our derivation it is not clear at
all that doubling algorithms converge when eigenvalues on the unit circle are present.
A positive answer to this question was first given in [28], and the proof was later
adapted to different types of doubling algorithms [12, 38]. We use the same technique
based on the Kronecker canonical form [21] here to prove convergence of this new
doubling variant. Note that the proof is easier in our setting, since we do not have to
worry about boundedness, and that we need no nonsingularity assumption.

Let us introduce some notation. Let A0 − sE0 be a regular N ×N matrix pencil,
and denote its Kronecker chains [21] by (wi

1, w
i
2, . . . , w

i
ki
) and the associated eigen-

values with λi. (Here wi
1 are the eigenvectors; the λi are possibly infinite and may

be repeated if there are multiple chains with the same eigenvalue, and
∑

i ki = N .)
We divide the spectrum into the sets S = {wi

j : |λi| < 1}, U = {wi
j : |λi| > 1},

C1 = {wi
j : |λi| = 1, j ≤ k1/2}, and C2 = {wi

j : |λi| = 1, j > k1/2}. Notice that
|S|+ |U|+ |C1|+ |C2| = N (where |X | denotes the cardinality of a set X ), and in fact
their union is a basis of CN composed of Kronecker chains. Moreover, let S, U , C1,
C2 be matrices whose columns span S, U , C1, and C2, respectively. Then we have the
following convergence theorem.

Theorem 8.1. Let A0 − sE0 be a regular 2n × 2n matrix pencil such that for
each i with |λi| = 1, ki is even and |S|+ |C1| = n.

Let Ak+1, Ek+1 be the sequence of matrix pencils generated by Algorithm 4. Then,

Π2

[
I

−X2,2

]
, ΠT

1

[−X1,1

I

]
converge to spanS ∪ C1 and spanU ∪ C1, respectively. The convergence is quadratic
with rate lmax/lmin, where

lmax := max
|λi|<1

|λi|, lmin := min
|λi|>1

|λi|,

if C1 (and thus C2) is empty, and linear with rate 1/2 otherwise.
Proof. We can easily obtain a slightly modified version of the Kronecker canonical

form as

W (A0 − sE0)Z =

⎡⎢⎢⎣
JS

JC1 H
JC1

I

⎤⎥⎥⎦− s

⎡⎢⎢⎣
I

I
I

JU

⎤⎥⎥⎦ ,
where W,Z ∈ CN,N are the nonsingular changes of bases that take the pencil to this
canonical form, Z =

[
S C1 C2 U

]
, JS is a Jordan matrix containing the stable

eigenvalues, JU is a Jordan matrix containing the inverses of the unstable eigenvalues,
JC1 contains the first half of each unimodular Jordan chain, and H is such that[

JC1 H
0 JC1
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is a permutation of the Jordan matrix containing the unimodular eigenvalues. As in
[28], from this equality we obtain

AkZ

⎡⎢⎢⎣
I

I
I

J2k

U

⎤⎥⎥⎦ = EkZ

⎡⎢⎢⎣
JS

JC1 H
JC1

I

⎤⎥⎥⎦
2k

= EkZ

⎡⎢⎢⎢⎣
J2k

S

J2k

C1
Hk

J2k

C1

I

⎤⎥⎥⎥⎦ ,
where Hk is defined via

[
JC1 H
0 JC1

]2k
=

[
J2k

C1
Hk

0 J2k

C1

]
.

Clearly, J2k

S = O(l2kmax), J
2k

U = O(l−2k

min ). It is proved in [28, Lemma 4.4] that Hk

is invertible for sufficiently large k, and H−1
k J2k

C1
= O(2−k), J2k

C1
H−1

k J2k

C1
= O(2−k).

Multiplying both sides with ⎡⎢⎢⎣
I

I

−H−1
k J2k

C1

0

⎤⎥⎥⎦
from the right, we obtain

AkZ

⎛⎜⎜⎝
⎡⎢⎢⎣
I

I
0

0

⎤⎥⎥⎦+O(2−k)

⎞⎟⎟⎠ = EkZO(2−k).

Thus, using the definition of Z and the boundedness of Ak and Ek, we have

O(2−k) = Ak

[
S C1

]
=

[
X12

X22 I

]
ΠT

2

[
S C1

]
,

from which we see that Π2

[
I

−X22

]
converges to a PGR of

[
S C1

]
. The analogous

result for the semiunstable subspace follows with a similar argument by considering
a Kronecker canonical form with Z̃ =

[
U C1 C2 S

]
.

To examine the stability and conditioning, for a given matrix U , we define its
condition number κ(U) = σmin(U)−1σmax(U), where σmin(U) and σmax(U) denote,
respectively, the smallest and the largest singular value. This condition number can
be regarded as a measure of how good U is as a representation of its column space.
This quantity plays a central role when computing projectors, for which we need to
form (UTU)−1, and when extracting an orthonormal basis, as the sensitivity of the
Q factor in the QR factorization of U depends on it [26]. In this sense, we show that
when XΠ has bounded entries, a PGR is a good representation of the subspace, and it
can be computed in a numerically stable way from another given good representation.

Theorem 8.2. Let ΠT
[

I
X

]
= U ∈ CN+M,N , where |XΠ

ij | ≤ T for each i, j.

Then, κ(U) ≤ √MNT 2 + 1.
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Proof. We have U∗U = I + X∗X ≥ I in the Loewner ordering of symmetric
matrices, and thus σmin(U) = λmin(U

∗U) ≥ 1. Given a vector w with ‖w‖2 = 1, then

(XΠw)i ≤ T
√
N for each i, by the Cauchy–Schwarz inequality, and thus σmax(U) =

‖U‖2 ≤
√
MNT 2 + 1.

Theorem 8.3. Let U , Π, Y Π , ZΠ , XΠ be as in (2.1), and let |xΠ
i,j | ≤ T for

each i, j. Then,

κ(Y Π) ≤ κ(U)
√
MNT 2 + 1.

Proof. Since multiplying by the orthogonal matrix Π has no effect on the condi-
tioning, we may safely assume Π = I and drop the superscripts Π for ease of notation.
Let QDQ∗ = Y ∗Y +Z∗Z and PEP ∗ = I +X∗X be spectral decompositions, so that
P,Q are unitary and D,E are diagonal. Then,

QDQ∗ = Y ∗Y + Z∗Z = Y ∗(I +X∗X)Y = Y ∗PEP ∗Y

and

I = D−1/2Q∗Y ∗PE1/2E1/2P ∗Y QD−1/2,

from which we infer that L = E1/2P ∗Y QD−1/2 is unitary. Then, we have the inequal-
ities

‖Y ‖2 =
∥∥∥PE−1/2LD1/2Q∗

∥∥∥
2
≤
∥∥∥D1/2

∥∥∥
2

∥∥∥E−1/2
∥∥∥
2

and ∥∥Y −1
∥∥
2
=
∥∥∥QD−1/2L∗E1/2P ∗

∥∥∥
2
≤
∥∥∥D−1/2

∥∥∥
2

∥∥∥E1/2
∥∥∥
2
.

By multiplying the two bounds and noticing that

∥∥∥D−1/2
∥∥∥
2

∥∥∥D1/2
∥∥∥
2
= κ(U),

∥∥∥E−1/2
∥∥∥
2

∥∥∥E1/2
∥∥∥
2
= κ

(
ΠT

[
I

XΠ

])
≤
√
MNT 2 + 1,

the assertion follows.
Another interesting observation is the following. Given a choice of (Ẽ, Ã) satis-

fying (7.1), all other possible choices can be expressed as (MẼ,MÃ) for a suitable

nonsingular M . Note that all such M lead to the same sẼE− ÃA up to right-handed
equivalence. However, not all choices ofM , i.e., of the pair satisfying (7.1), are equally
good from a numerical point of view, since some might give rise to large errors in the
resulting pencil. For instance, it is clear that in the two pencils

s

[
1 0
0 1

]
−
[
1 1
1 1

]
, s

[
1 0
1 ε

]
−
[

1 1
1 + ε 1 + ε

]
,

the first is to be preferred, since the second is close to a singular pencil with the
two matrices almost having a common left nullspace. Extending our analogy between
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matrix pencils up to right-handed equivalence and subspaces, we may argue that
κ
([

ET

AT

])
measures how well-conditioned our choice of the representative is in the

equivalence class of pencils up to right-handed equivalence. If we are looking for the
best possible representation of sẼ − Ã, then it is clear that an orthogonal basis of

κ
([

˜ET

˜AT

])
is the best choice, and this is precisely what is computed by the inverse-free

doubling algorithms. However, a more meaningful goal is stability of the final result
of the doubling step, i.e.,

(8.1) κ

([
ET ẼT

AT ÃT

])
.

In this view, it is not clear that the path chosen in the inverse-free disc algorithm is
the best choice. In fact, for very small matrices the graph subspace strategy seems
equivalent. We compared the magnitude of (8.1) when (Ẽ, Ã) are computed via a QR
decomposition as in (7.2) or with a PGR and (7.4). We chose 1000 random pencils
with entries extracted from a Gaussian distribution of mean zero and variance one.
In all cases, the condition numbers given by the two techniques are comparable. In
551 cases the conditioning of the doubled pencil computed with (7.2) is lower, and
in the other 449 (7.4) gave a lower condition number. This shows that despite the
intuition that using an orthonormal basis should always give more stable results, in
fact the two strategies are comparable for small matrices. For larger matrices, we may
lose (on average) a factor N with respect to the orthogonal approach, as predicted by
Theorem 8.3.

The next step in a complete stability analysis would be to show that a single step
of doubling performed with the strategy of (7.4) is backward stable. However, this
result cannot be obtained, not because the error bounds are unsatisfactory but rather
because the backward stability setting cannot be adapted meaningfully to doubling
algorithms. Consider, for instance, the matrix pencil

sE −A = s

[
1 0
0 1

]
−
[
0 0
0 0

]
,

for which all known doubling methods give

sẼE − ÃA = s

[
1 0
0 1

]
−
[
0 0
0 0

]
.

Note that this is a perfectly good problem, far from the critical and ill-conditioned
cases, from the point of view of computing the invariant subspace associated with the
eigenvalues inside the unit circle. A backward stability result would give us, for a
special choice of the perturbation, a pair (Ec, Ac) that is very close to (E,A) and for
which

sẼcEc − ÃcAc = s

[
1 0
0 1

]
−
[
0 ε
0 0

]

holds in exact arithmetic. However, this would imply that E−1
c Ac is a matrix square

root of
[
0 ε
0 0

]
, but it is well-known that this matrix does not admit a square root [27].
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Therefore, a backward stability result for a single step of doubling is impossible. If we
focus on the full algorithm as a way to compute the invariant subspace associated with
the eigenvalues inside and outside the unit disk, then a backward stability analysis
may still be possible, although a challenging task.

9. Numerical results. We have implemented a MATLAB version of a PGR
doubling algorithm as in Algorithm 4. We ran the method on the 33 test examples
used in [13]. These problems come from the standard carex test suite [8], some
using the standard parameters, some using different choices in order to create more
challenging examples. The exact values of the parameters can be found in [13].

We transformed the pencil sI−H to a symplectic pencil using a Cayley transform
with parameter γ = ‖H‖2. Notice that this differs from the usual heuristic for γ in
the standard SDA. The reason is that the usual heuristic aims to reduce the value
of κ(Y Π), with Π = I, in the first step of the algorithm. Since we do not restrict
ourselves to Π = I in the new algorithms, it makes no sense to use a heuristic aimed
at this case. In the optimization, Algorithm 1 was run with a threshold T = 2 and
Algorithm 2 with TD = 2, TO = 3.

We compare the results with the original SDA [14], the inverse-free sign method
[4], the MATLAB command care(...,’factor’), the method in [13] based on the
periodic Schur decomposition, and the palindromic doubling algorithm (PDA) of [33].
The care command from MATLAB is based on the QZ algorithm, which is backward
stable but not structure-preserving. It was used with the option ’factor’, which
returns (up to some row scaling) a basis of the Lagrangian subspace U rather than
directly the Riccati solutionX . The periodic Schur method is in theory both backward
stable and structure-preserving, but as we see, in finite precision in some cases the
orthogonal structure is well preserved while the symplectic structure is not. The PDA
method is a new type of doubling algorithm, which enforces the weaker palindromic
(rather than symplectic) structure. It still relies on the inversion of a possibly ill-
conditioned matrix at each step, but the condition number of this matrix does not
seem to be related to that of the matrix to be inverted in SDA. There are problems
for which PDA is unstable, but they are in general different from those for which SDA
is unstable.

The periodic Schur method uses the URV decomposition implemented in
FORTRAN in the library HAPACK which has not yet been adapted to the current
version of MATLAB. Therefore, we did not run new tests for this method but present
the error results published in [13] instead, which use the same expressions for the
errors.

We remark that apart from SDA, all other methods directly compute a basis
for the Lagrangian subspace without going through the Riccati solution X : the
’factor’ switch of care has already been discussed, and PDA and the inverse-free
sign method (essentially) both perform an iteration on the Hamiltonian, then extract
the Lagrangian subspace as the kernel of the resulting matrix. As discussed in the
introduction, this is the more stable choice, and in many applications the relevant
quantities can be computed without ever forming X .

In Figure 9.1 we present the residual of the computed Lagrangian subspace, ac-
cording to the formula

(9.1) rS =

∥∥HU − UUTHU∥∥
2

‖H‖2
.

In Figure 9.2, for the sake of completeness, we also present the corresponding results
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care (QZ)

[13]

Fig. 9.1. Subspace (relative) residual for the 33 problems in [13].

using the Riccati residual

(9.2) rR =

∥∥H + FTX +XF −XGX
∥∥
2

‖H‖2 + ‖FTX‖2 + ‖XF‖2 + ‖XGX‖2
.

As discussed in the introduction, this residual measure may be in itself an ill-conditioned
function of the Hamiltonian matrix H, when X has large norm. For this reason, the
residuals in Figure 9.2 sometimes vary wildly even when the results of the different
methods on the same experiment are indistinguishable according to the error mea-
sure (9.1). Therefore, the results in Figure 9.2 are less conclusive.

To check how well the Lagrangian property is perserved, in Figure 9.3 we present
the value of ‖U∗JU‖2, where U is an orthonormal basis for the computed subspace.
This value should be exactly zero, since invariant subspaces of 2N × 2N Hamiltonian
matrices associated with N eigenvalues inside the open unit disk are Lagrangian in
exact arithmetic. Values significantly larger than machine precision indicate further
errors in the computed subspace that are not revealed by residual checking and may
appear even when using backward stable algorithms, if they do not preserve structure.
Algorithms SDA and PGR return subspaces in the forms (1.1) and (1.5), respectively,
with X = X∗. Thus this residual is exactly zero, even when computed in IEEE
arithmetic. Therefore, they are not reported in the figure. For the URV-based method
of [13], the residual is reported in that article only for two experiments in which the
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Fig. 9.2. Riccati (relative) residual for the 33 test problems.

deviation from the Lagrangian property is particularly significant. For this reason
there are only two data points in the figure for this method; nevertheless, they are
sufficient to prove that the algorithm suffers from the loss of Lagrangian structure.

The results clearly show that doubling algorithms with PGRs can compute in-
variant subspaces of the same quality as the backward stable algorithms based on
orthogonal transformations, while preserving structure exactly. All the other meth-
ods, on the contrary, do not reach both these goals on all the experiments.

We conclude this section with some remarks on the computational cost and the
number of optimization steps needed. As stated before, with this implementation the

computational cost of the kth step of doubling is 19
3 N

3 + N2(2ξ
(k)
1 + ξ

(k)
2 ) + o(N3),

where ξ
(k)
1 and ξ

(k)
2 are, respectively, the number of optimizations steps in Algorithms 1

and 2. Table 9.1 presents the values of

Ξ1 =
∑

ξ
(k)
1 , Ξ2 =

∑
ξ
(k)
2 ,

where the sum is taken over all the doubling steps needed along the algorithm. The
number is always comparable with the dimension n of the problem, and in many
cases it is exactly zero. These results show that the overhead due to the optimization
procedure of Algorithms 1 and 2 is very small in practice and cheaper in comparison
than the cost of one additional step of doubling.
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[13] (partial)

Fig. 9.3. Loss of Lagrangianity in the 33 test problems.

Table 9.1

Number of optimization steps needed in the algorithm.

Problem n S1 S2

1 2 0 0
2 2 0 0
3 4 1 1
4 8 0 0
5 9 4 1
6 30 29 14
7 2 0 0
8 2 0 0
9 2 2 1
10 2 3 1
11 2 0 0

Problem n S1 S2

12 2 0 0
13 2 0 0
14 2 0 0
15 2 0 1
16 2 0 1
17 2 0 0
18 2 4 1
19 3 0 0
20 3 0 0
21 4 0 1
22 4 3 3

Problem n S1 S2

23 4 0 0
24 4 0 0
25 77 0 0
26 237 0 0
27 397 0 0
28 8 0 0
29 64 0 0
30 21 0 0
31 21 14 20
32 100 0 0
33 60 0 30

10. Conclusions and challenges. As a main result of this paper we have shown
that doubling algorithms can be performed in a structure-preserving fashion, without
the need for inverting ill-conditioned matrices, and that the accuracy of the computed
invariant subspaces is of quality equal to that of the modern algorithms based on
orthogonal transformations. We have formulated all results for complex matrices, but
all the results hold in a similar way for real matrices.
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Several questions remain open:
• Can we perform the doubling step in Algorithm 4 using a strategy that pre-
serves the Hermitian structure explicitly? This would lead to a more efficient
implementation and allow us to drop the final symmetrization at every step
after the first.
• Doubling iterations for the matrix sign function can be accelerated with a
suitable scaling. The same strategy could in principle be applied to this
doubling variant. Note that choosing a suitable γ in the Cayley transform
corresponds to scaling at the first step only. Moreover, as argued in the
previous section, the value of γ is usually chosen not to minimize the number
of iterations but rather to obtain good conditioning in the matrix to invert at
the first step. Since we have now overcome that problem, a different heuristic
for the choice of γ can be sought, focusing on convergence speed.
• Can we obtain stronger bounds on the number of optimization steps needed
during Algorithms 1 and 2?
• The presented results can be adapted to doubling algorithms for several non-
symmetric entrywise-positive equations as studied in [12, 24]. It would be
interesting to analyze if the entrywise positive structure can be preserved
explicitly.
• Another possible application of doubling algorithms is spectral separation
for some divide-and-conquer nonsymmetric eigenvalue calculation algorithms
[2, 18, 35]. The goal of this class of algorithms is to move all the computational
work into routines such as matrix multiplications and QR factorizations, as
they can be parallelized and implemented on complex memory architectures
with better performance than the usual Hessenberg QR-based algorithms. In
order to make our new version of doubling suitable to this setting, more work
needs to be done to restructure Algorithm 1 into a more high-performance
computing version, with less communication cost and more use of BLAS level-
3 arithmetic.
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