
Received TODO; Revised TODO; Accepted TODO

DOI: xxx/xxxx

ARTICLE TYPE

Iterative and doubling algorithms for Riccati-type matrix
equations: a comparative introduction†

Federico Poloni*

1Dipartimento di Informatica, Università di
Pisa, Pisa, Italy

Correspondence
*Email: federico.poloni@unipi.it

Present Address
Dipartimento di Informatica, Largo
Pontecorvo, 56127 Pisa, Italy.

We review a family of algorithms for Lyapunov- andRiccati-type equationswhich are
all related to each other by the idea of doubling: they construct the iterate Qk = X2k
of another naturally-arising fixed-point iteration (Xℎ) via a sort of repeated squaring.
The equations we consider are Stein equationsX−A∗XA = Q, Lyapunov equations
A∗X +XA +Q = 0, discrete-time algebraic Riccati equations X = Q + A∗X(I +
GX)−1A, continuous-time algebraic Riccati equationsQ+A∗X+XA−XGX = 0,
palindromic quadratic matrix equations A +QY + A∗Y 2 = 0, and nonlinear matrix
equations X + A∗X−1A = Q. We draw comparisons among these algorithms,
highlight the connections between them and to other algorithms such as subspace
iteration, and discuss open issues in their theory.

KEYWORDS:
doubling algorithm, algebraic Riccati equation, control theory, numerical linear algebra

1 INTRODUCTION

Riccati-type matrix equations are a family of matrix equations that appears very frequently in literature and applications, espe-
cially in systems theory. One of the reasons why they are so ubiquitous is that they are equivalent to certain invariant subspace
problems; this equivalence connects them to a larger part of numerical linear algebra, and opens up avenues for many solution
algorithms.
Many books (and even more articles) have been written on these equations; among them, we recall the classical monography

by Lancaster and Rodman [64], a review book edited by Bittanti, Laub and Willems [23], various treatises which consider them
from different points of view such as [1, 4, 5, 20, 25, 39, 58, 74], and recently also a book devoted specifically to doubling [57].
This vast theory can be presented from different angles; in this exposition, we aim to present a selection of topics which differs

from that of the other books and treatises. We focus on introducing doubling algorithms with a direct approach, explaining in
particular that they arise as ‘doubling variants’ of other more basic iterations, and detailing how they are related to the subspace
iteration, to ADI, to cyclic reduction and to Schur complements. We do not treat algorithms and equations with the greatest
generality possible, to reduce technicalities; we try to present the proofs only up to a level of detail that makes the results plausible
and allows the interested reader to fill the gaps.
The basic idea behind doubling algorithms can be explained through the ‘model problem’ of computing wℎ = M2ℎv for a

certain matrixM ∈ ℂn×n, v ∈ ℂn, and ℎ ∈ ℕ. There are two possible ways to approach this computation:

(1) Compute vk+1 =Mvk, for k = 0, 1,… , 2ℎ−1 starting from v0 = v; then the result is wℎ = v2ℎ .

(2) ComputeMk+1 = (Mk)2, for k = 0, 1,… , ℎ−1, starting fromM0 =M ; then the result iswℎ =Mℎv (repeated squaring).

†F. Poloni acknowledges the support of Istituto Nazionale di Alta Matematica (INDAM), and of a PRA (progetti di ricerca di ateneo) project of the University of Pisa.

2 Federico Poloni

It is easy to verify that Mkv = v2k for each k. Hence k iterations of (2) correspond to 2k iterations of (1). We say that (2) is
a squaring variant, or doubling variant, of (1). Each of the two versions has its own pros and cons, and in different contexts
one or the other may be preferred. If ℎ is moderate and M is large and sparse, one should favor variant (1): sparse matrix-
vector products can be computed efficiently, while the matrices Mk would become dense rather quickly, and one would need
to compute and store all their n2 entries. On the other hand, if M is a dense matrix of non-trivial size (let us say n ≈ 103 or
104) and ℎ is reasonably large, then variant (2) wins: fewer iterations are needed, and the resulting computations are rich in
matrix multiplications and BLAS level-3 operations, hence they can be performed on modern computers even more efficiently
than their flop counts suggest. This problem is an oversimplified version, but it captures the spirit of doubling algorithms, and
explains perfectly in which cases they work best.
Regarding competing methods: we mention briefly in our exposition Newton-type algorithms, ADI, and Krylov-type algo-

rithms. We do not treat here direct methods, incuding Schur decomposition-based methods [66, 78, 91], methods based on
structured QR [28, 26, 71], on symplectic URV decompositions [15, 33], and linear matrix inequalities [25]. Although these
competitors may be among the best methods for dense problems, they do not fit the scope of our exposition and they do not lend
themselves to an immediate comparison with the algorithms that we discuss.
The equations that we treat arise mostly from the study of dynamical systems, both in discrete and continuous time. In our

exposition, we chose to start from the discrete-time versions: while continuous-time Riccati equations are simpler and more
common in literature, it is more natural to start from discrete-time problems in this context. Indeed, when we discuss algorithms
for continuous-time problems we shall see that often the first step is a reduction to a discrete-time problem (possibly implicit).
In the following, we use the notation A ≻ B (resp. A ⪰ B) to mean that A − B is positive definite (resp. semidefinite)

(Loewner order). We use �(M) to denote the spectral radius of M , the symbol LHP = {z ∈ ℂ ∶ Re(z) < 0} to denote the
(open) left half-plane, and RHP for the (open) right half-plane. We use the notation Λ(M) to denote the spectrum ofM , i.e.,
the set of its eigenvalues. We useM∗ to denote the conjugate transpose, andM⊤ to denote the transpose without conjugation,
which appears when combining vectorizations and Kronecker products with the identity vec(MXN) = (N⊤⊗M) vec(X) [48,
Sections 1.3.6–1.3.7].

2 STEIN EQUATIONS

The simplest matrix equation that we consider is the Stein equation (or discrete-time Lyapunov equation).

X − A∗XA = Q, Q = Q∗ ⪰ 0, (1)

for A,X,Q ∈ ℂn×n. This equation often arises in the study of discrete-time constant-coefficient linear systems

xk+1 = Axk. (2)

A classical application of Stein equations is the following. If X solves (1), then by multiplying by x∗k and xk on both sides one
sees that V (x) ∶= x∗Xx is decreasing over the trajectories of (2), i.e., V (xk+1) ≤ V (xk). This fact can be used to prove stability
of the dynamical system (2).

2.1 Solution properties
The Stein equation (1) is linear, and can be rewritten using Kronecker products as

(In2 − A⊤ ⊗A∗) vec(X) = vec(Q). (3)

If A = UTU ∗ is a Schur factorization of A, then we can factor the system matrix as

In2 −M = In2 − A⊤ ⊗A∗ = (Ū ⊗ U)(In2 − T ⊤ ⊗ T ∗)(U⊤ ⊗U ∗), M = A⊤ ⊗A∗, (4)

which is a Schur-like factorization where the middle term is lower triangular. One can tell when I −M is invertible by looking
at its diagonal entries: I−M is invertible (and hence (1) is uniquely solvable) if and only if �i�j ≠ 1 for each pair of eigenvalues
�i, �j of A. This holds, in particular, when �(A) < 1. When the latter condition holds, we can apply the Neumann inversion
formula

(I −M)−1 = I +M +M2 +… , (5)

Federico Poloni 3

which gives (after de-vectorization) an expression for the unique solution as an infinite series

X =
∞
∑

k=0
(A∗)kQAk. (6)

It is apparent from (6) that X ⪰ 0. A reverse result holds, but with strict inequalities: if (1) holds with X ≻ 0 and Q ≻ 0, then
�(A) < 1 [39, Exercise 7.10].

2.2 Algorithms
As discussed in the introduction, we do not describe here direct algorithms of the Bartels–Stewart family [6, 37, 45, 47] (which,
essentially, exploit the decomposition (4) to reduce the cost of solving (3) from (n6) to (n3)) even if they are often the best
performing ones for dense linear (Stein or Lyapunov) equations. Rather, we present here two iterative algorithms, which we will
use to build our way towards algorithms for nonlinear equations.
The Stein equation (1) takes the form of a fixed-point equation; this fact suggests the fixed-point iteration

X0 = 0, Xk+1 = Q + A∗XkA, (7)

known as Smith method [90]. It is easy to see that the kth iterate Xk is the partial sum of (6) (and (5)) truncated to k + 1 terms,
thus convergence is monotonic, i.e., Q = X0 ⪯ X1 ⪯ X2 ⪯⋯ ⪯ X. Moreover, some manipulations give

vec(X −Xk) = (I +M +M2 +…) vec(Q) − (I +M +M2 +⋯ +Mk) vec(Q)
=Mk+1(I +M +M2 +…) vec(Q) =Mk+1 vec(X),

or, devectorizing,
X −Xk = (A∗)k+1XAk+1. (8)

This relation (8) implies ‖X −Xk‖ = (rk) for each r > �(A)2, so convergence is linear when �(A) < 1, and it typically slows
down when �(A) ≈ 1.
A doubling variant comes from splitting the partial sums into two halves. The truncated sums of (5) to 2k+1 terms can be

computed iteratively using the identity

I +M +M2 +⋯ +M2k+1−1 = (I +M +M2 +⋯ +M2k−1) +M2k(I +M +M2 +⋯ +M2k−1),

without computing all the intermediate sums. Setting vecQk ∶= (I +M +M2 +⋯ +M2k−1) vecQ and Ak ∶= A2
k , one gets

the iteration

A0 = A, Ak+1 = A2k, (9a)
Q0 = Q, Qk+1 = Qk + A∗kQkAk. (9b)

In view of the definitions, we have Qk = X2k ; so this method computes the 2kth iterate of the Smith method directly with (k)
operations, without going through all intermediate ones. Convergence is quadratic: ‖X − Qk‖ = (r2k) for each r > �(A)2.
The method (9) is known as squared Smith. It has been used in the context of parallel and high-performance computing [16],
and reappeared in recent years, when it has been used for large and sparse equations [80, 86, 12] in combination with Krylov
methods.

3 LYAPUNOV EQUATIONS

Lyapunov equations
A∗X +XA +Q = 0, Q = Q∗ ⪰ 0 (10)

are the continuous-time counterpart of Stein equations. They arise from the study of continuous-time constant-coefficient linear
systems

d
dt
x(t) = Ax(t). (11)

A classical application is the following. IfX solves (10), by multiplying on by x(t)∗ and x(t) on both sides one sees that V (x) ∶=
x∗Xx is decreasing over the trajectories of (11), i.e., d

dt
V (x(t)) ≤ 0. This fact can be used to prove stability of the dynamical

system (11). Today stability is more often proved by computing eigenvalues, but Stein equations (1) and Lyapunov equations (10)

4 Federico Poloni

have survived in many other applications in systems and control theory, for instance in model order reduction [8, 50, 89], or as
the inner step in Newton methods for other equations (see for instance (46) in the following).

3.1 Solution properties
Using Kronecker products, one can rewrite (10) as

(In ⊗A∗ + A⊤ ⊗ In) vec(X) = − vec(Q), (12)

and a Schur decomposition A = UTU ∗ produces

In ⊗A∗ + A⊤ ⊗ In = (Ū ⊗ U)(In ⊗ T ∗ + T ⊤ ⊗ In)(U⊤ ⊗U ∗). (13)

Again, this is a Schur-like factorization, where the middle term is lower triangular. One can tell when In ⊗ A∗ + A⊤ ⊗ In is
invertible by looking at its diagonal entries: that matrix is invertible (and hence (10) is uniquely solvable) if and only if �̄i+�j ≠ 0
for each pair of eigenvalues �i, �j of A. This holds, in particular, if the eigenvalues of A all lie in LHP = {z ∈ ℂ∶ Re(z) < 0}.
When the latter condition holds, an analogue of (6) is

X =

∞

∫
0

exp(A∗t)Q exp(At) dt. (14)

Indeed, this integral converges for every choice of Q if and only if the eigenvalues of A all lie in LHP.
Notice the pleasant symmetry with the Stein case: the (discrete) sum turns into a (continuous) integral; the stability condition

for discrete-time linear time-invariant dynamical systems �(A) < 1 turns into the oneΛ(A) ⊂ LHP for continuous-time systems.
Perhaps a bit less evident is the equivalence between the condition �̄i + �j ≠ 0 (i.e., no two eigenvalues of A are mapped into
each other by reflection with respect to the imaginary axis) and �i�j ≠ 1 (i.e., no two eigenvalues of A are mapped into each
other by circle inversion with respect to the complex unit circle).
Lyapunov equations can be turned into Stein equations and vice versa. Indeed, for a given � ∈ ℂ, (10) is equivalent to

(A∗ − �I)X(A − �̄I) − (A∗ + �̄I)X(A + �I) − 2Re(�)Q = 0,

or, if A − �̄I is invertible,

X − c(A)∗Xc(A) = 2Re(�)(A∗ − �I)−1Q(A − �̄I)−1, c(A) = (A + �I)(A − �̄I)−1 = (A − �̄I)−1(A + �I). (15)

If � ∈ RHP, then the right-hand side is positive semidefinite and (15) is a Stein equation. The stability properties of c(A) can
be explicitly related to those of A via the following lemma.

Lemma 1 (properties of Cayley transforms). Let � ∈ RHP. Then,

(1) for � ∈ ℂ, we have |c(�)| = |

|

|

�+�
�−�̄

|

|

|

< 1 if and only if � ∈ LHP;

(2) for a matrix A ∈ ℂn×n, we have �(c(A)) < 1 if and only if Λ(A) ⊂ LHP.

A geometric argument to visualize (1) is the following. In the complex plane, −� and �̄ are symmetric with respect to the
imaginary axis, with −� lying to its left. Thus a point � ∈ ℂ is closer to −� than to �̄ if and only if it lies in LHP. Part (2) follows
from facts on the behaviour of eigenvalues of a matrix under rational functions [64, Proposition 1.7.3], which we will often use
also in the following.
Another important property of the solutionsX of Lyapunov and Stein equations is the decay of their singular values in many

practical cases. We defer its discussion to the following section, since a proof follows from the properties of certain solution
algorithms.

3.2 Algorithms
As in the Stein case, one can implement a direct (n3) Bartels-Stewart algorithm [6] by exploiting the decomposition (13): the
two outer factors have Kronecker product structure, and the inner factor is lower triangular, allowing for forward substitution.
An interesting variant allows one to compute the Cholesky factor of X directly from the one of Q [55].

Federico Poloni 5

Again, we focus our interest on iterative algorithms. We will assume Λ(A) ⊂ LHP. Then, thanks to Lemma 1, we have
�(c(A)) < 1, so we can apply the Smith method (7) to (15). In addition, we can change the value of � at each iteration. The
resulting algorithm is known as ADI iteration [79, 92]:

X0 = 0, Xk+1 = Qk + ck(A)∗Xkck(A), (16)
Qk = 2Re(�k)(A∗ − �kI)−1Q(A − �̄kI)−1, ck(A) = (A + �kI)(A − �̄kI)−1 = (A − �̄kI)−1(A + �kI).

The sequence of shifts �k ∈ RHP can be chosen arbitrarily, with the only condition that �̄k ∉ Λ(A). By writing a recurrence for
the error Ek = X −Xk, one sees that

Ek = rk+1(A)∗E0rk+1(A) = rk+1(A)∗Xrk+1(A), rk+1(A) = ck(A)… c1(A)c0(A), (17)

a formula which generalizes (8). When A is normal, the problem of assessing the convergence speed of this iteration can be
reduced to a scalar approximation theory problem. Note that

‖rk(A)‖ = max
�∈Λ(A)

|rk(�)|, ‖rk(A)∗‖ = ‖rk(−A∗)−1‖ =
1

min�∈Λ(A)|rk(−�∗)|
.

If one knows a region E ⊂ LHP that encloses the eigenvalues of A, the optimal choice of rk is the degree-k rational function
that minimizes

supz∈E|rk(z)|
infz∈−E∗ |rk(z)|

, (18)

i.e., a rational function that is ‘as large as possible’ onE and ‘as small as possible’ on−E∗. Finding this rational function is known
as Zolotarev approximation problem, and it was solved by its namesake for many choices of E, including E = [a, b] ⊆ ℝ+:
this choice of E corresponds to having a symmetric positive definite A for which a lower and upper bound on the spectrum are
known. It is known that the optimal ratio (18) decays as �k, where � < 1 is a certain value that depends on E, related to its so-
called logarithmic capacity. See the recent review by Beckermann and Townsend [7] for more details. Optimal choices for the
shifts for a normal A were originally studied by Wachspress [92, 43]. When A is non-normal, a similar bound can be obtained
from its eigendecomposition A = V DV −1, but it includes its eigenvalue condition number �(V) = ‖V ‖‖V ‖−1, and thus it is
of worse quality.
An important case, both in theory and in practice, is when Q has low rank. One usually writes Q = C∗C , where C ∈ ℂp×n is

a short-fat matrix, motivated by a standard notation in control theory. A decomposition Xk = ZkZ∗
k can be derived from (16),

and reads

Zk =
[√

2Re(�k−1)(A∗ − �k−1I)−1C∗, ck−1(A)∗Zk−1
]

=
[

√

2Re(�k−1)(A∗ − �k−1I)−1C∗,
√

2Re(�k−2)(A∗ − �k−1I)−1(A∗ + �̄k−1I)(A∗ − �k−2I)−1C∗,… ,
√

2Re(�0)(A∗ − �k−1I)−1(A∗ + �̄k−1I)(A∗ − �k−2I)−1(A∗ + �̄k−2I)⋯ (A∗ − �0I)−1C∗
]

. (19)

Hence Zk is obtained by concatenating horizontally k terms V1, V2,… , Vk of size n × p each. Each of them contains a rational
function of A∗ of increasing degree multiplied by C∗. All the factors in parentheses commute: hence that the factors Vj can be
computed with the recurrence

Zk =
[

V1 V2 ⋯ Vk
]

, V1 =
√

2Re(�k−1)(A∗ − �k−1I)−1C∗,

Vj+1 =

√

2Re(�k−j−1)
√

2Re(�k−j)
(A∗ − �k−j−1I)−1(A∗ + �̄k−jI)Vj

=

√

2Re(�k−j−1)
√

2Re(�k−j)

(

Vj + (�k−j−1 + �̄k−j)(A∗ + �k−j−1I)−1Vj
)

. (20)

This version of ADI is known as low-rank ADI (LR-ADI) [13]. After k steps,Xk = ZkZ∗
k , but note that in the intermediate steps

j < k the quantity
[

V1 V2 ⋯ Vj
] [

V1 V2 ⋯ Vj
]∗ differs from Xj in (16). Indeed, in this factorized version the shifts appear in

reversed order, starting from �k−1 and ending with �0. Nevertheless, we can use LR-ADI as an iteration in its own right: since
we keep adding columns to Zk at each step, ZkZ∗

k converges monotonically to X. This version is particularly convenient for
problems in which A is large and sparse, because in each step we only need to solve p linear systems with a shifted matrix
A∗ − �I , and we store in memory only the n × kp matrix Zk. In contrast, iterations such as (9) are not going to be efficient for
problems with a large and sparse A, since powers of sparse matrices become dense.

6 Federico Poloni

The formula (19) displays the relationship betweenADI and certain Krylovmethods: since the LR-ADI iterates are constructed
by applying rational functions of A∗ iteratively to C∗, the LR-ADI iterateZk lies in the so-called rational Krylov subspace [85]

Kq,k+1(A∗, C∗) = span{q(A∗)−1p(A∗)C∗ ∶ p is a polynomial of degree ≤ k}, (21)

constructed with pole polynomial q(z) = (z − �0)(z − �1)⋯ (z − �k−1). This suggests a different view: what is important is not
the form of the ADI iteration, but rather the approximation spaceKq,k(A∗, C∗) to which its iterates belong. Once one has chosen
suitable shifts and computed an orthogonal basis Uk of Kq,k+1(A∗, C∗), (10) can be solved via Galerkin projection: we seek an
iterate Xk of the form Xk = UkYkU ∗

k , and compute Yk by solving the projected equation

0 = U ∗
k (A

∗Xk +XkA +Q)U = (U ∗
kA

∗Uk)Yk + Yk(U ∗
kAUk) + U

∗
kQUk,

which is a smaller (kp × kp) Lyapunov equation.
While the approximation properties of classical Krylov subspaces are related to polynomial approximation, those of rational

Krylov subspaces are related to approximation with rational functions, as in the Zolotarev problem mentioned earlier. In many
cases, rational approximation has better convergence properties, with an appropriate choice of the shifts. This happens also for
Lyapunov equations: algorithms based on rational Krylov subspaces (21) [42, 41] (including ADI which uses them implicitly)
often display better convergence properties than equivalent ones in which Uk is chosen as a basis of a regular Krylov subspace
or of an extended Krylov subspace

Kk1,k2(A
∗, C∗) = span{l(A∗)C∗ ∶ l is a Laurent polynomial of degrees (k1, k2)}. (22)

Computing a basis for a rational Krylov subspace (21) is more expensive than computing one for an extended Krylov sub-
space (22): indeed, the former requires solving linear systems with A − �kI for many values of k, while the latter uses multiple
linear systems with the same matrix A. However, typically, their faster convergence more than compensates for it. Another
remarkable feature is the possibility to use an adaptive procedure based on the residual for shift selection [42].
See also the analysis in Benner, Li, Truhar [14], which shows that Galerkin projection can improve also on the ADI solution.
An important consequence of the convergence of these algorithms is that they can be used to give bounds on the rank of the

solution X. Since we can find rational functions such that (18) decreases exponentially, the formula (17) shows that X can be
approximated well withXk, which has rank at most k ⋅rank(Q) in view of the decomposition (19). This observation has practical
relevance, since in many applications p is very small, and the exponential decay in the singular values of X is very well visible
and helps reducing the computational cost.

3.3 Remarks
There is vast literature already for linear matrix equations, especially when it comes to large and sparse problems. We refer the
reader to the review by Simoncini [89] for more details. The literature typically deals with continuous-time Lyapunov equations
more often than their discrete-time counterpart; however, Cayley transformations (15) can be used to convert one to the other.
In particular, it follows from our discussion that a step of ADI can be interpreted as transforming the Lyapunov equation (10)

into a Stein equation (1) via a Cayley transform (15) and then applying one step of the Smith iteration (7). Hence the squared
Smith method (9) can be interpreted as a doubling algorithm to construct the ADI iterate X2k in k iterations only, but with the
significant limitation of using only one shift � in ADI.
It is known that a wise choice of shifts has a major impact on the convergence speed of these algorithms; see e.g. Güttel [54].

A major challenge for doubling-type algorithms seems incorporating multiple shifts in this framework of repeated squaring. It
seems unlikely that one can introduce more than one shift per doubling iteration, but even doing so would be an improvement,
allowing one to leverage the theory of rational approximation that underlies ADI and Krylov space methods.

4 DISCRETE-TIME RICCATI EQUATIONS

We consider the equation

X = Q + A∗X(I + GX)−1A G = G∗ ⪰ 0, Q = Q∗ ⪰ 0, A, G,Q,X ∈ ℂn×n, (23)

to be solved for X = X∗ ⪰ 0. This equation is known as discrete-time algebraic Riccati equation (DARE), and arises in
various problems connected to discrete-time control theory [39, Chapter 10]. Variants in whichG,Q are not necessarily positive

Federico Poloni 7

semidefinite also exist [82, 94], but we will not deal with them here to keep our presentation simpler. The non-linear term can
appear in various slightly different forms: for instance, if G = BR−1B∗ for certain matrices B ∈ ℂn×m, R ∈ ℂm×m, R = R∗ ≻ 0,
then one sees with some algebra that

X(I + GX)−1 = (I +XG)−1X = X −X(I + GX)−1GX
= X −XBR−1∕2(I + R−1∕2B∗XBR−1∕2)−1R−1∕2B∗X
= X −XB(R + B∗XB)−1B∗X, (24)

and all these forms can be plugged into (23) to obtain a slightly different (but equivalent) equation. In particular, from the
versions in the last two rows one sees thatX(I +GX)−1 is Hermitian, which is not evident at first sight. These identities become
clearer if one considers the special case in which �(GX) < 1: in this case, one sees that the expressions in (24) are all different
ways to rewrite the sum of the converging series X −XGX +XGXGX −XGXGXGX +… .
Note that the required inverses exist under our assumptions, because the eigenvalues of GX coincide with those of

G1∕2XG1∕2 ⪰ 0.

4.1 Solution properties
For convenience, we assume in the following that A is invertible. The results in this section hold also when it is singular, but
to formulate them properly one must deal with matrix pencils, infinite eigenvalues, and generalized invariant subspaces (or
deflating subspaces), a technical difficulty that we would rather avoid here since it does not add much to our presentation. For a
more general pencil-based presentation, see for instance Mehrmann [72].
For each solution X of the DARE (23), it holds that

[

A 0
−Q I

] [

I
X

]

=
[

I G
0 A∗

] [

I
X

]

K, K = (I + GX)−1A. (25)

Equation (25) shows that Im
[

I
X
]

is an invariant subspace of

 =
[

I G
0 A∗

]−1 [A 0
−Q I

]

, (26)

i.e.,  maps this subspace into itself. In particular, the n eigenvalues (counted with multiplicity) of K are a subset of the 2n
eigenvalues of : this can be seen by noticing that the matrix K represents (in a suitable basis) the linear operator  when
restricted to said subspace. Conversely, if one takes a basis matrix

[

U1
U2

]

for an invariant subspace of  , and if U1 is invertible,

then
[

I
U2U−1

1

]

is another basis matrix, the equality (25) holds, and X = U2U−1
1 is a solution of (23). Hence, (23) typically has

multiple solutions, each associated to a different invariant subspace. However, among them there is a preferred one, which is the
one typically sought in applications.

Theorem 1. [64, Corollary 13.1.2 and Theorem 13.1.3] Assume that Q ⪰ 0, G ⪰ 0 and (A,G) is d-stabilizable. Then, (23) has
a (unique) solution X+ such that

(1) X+ = X∗
+ ⪰ 0;

(2) X+ ⪰ X for any other Hermitian solution X;

(3) �
(

(I + GX+)−1A
)

≤ 1.

If, in addition, (Q,A) is d-detectable, then �
(

(I + GX+)−1A
)

< 1.

The hypotheses involve two classical definitions from control theory [39]: d-stabilizable (resp. d-detectable) means that all
Jordan chains of A (resp. A∗) that are associated to eigenvalues outside the set {|�| < 1} are contained in the maximal (block)
Krylov subspace span(B,AB,A2B,…) (resp. span(C∗, A∗C∗, (A∗)2C∗,…)). We do not discuss further these hypotheses nor
the theorem, which is not obvious to prove; we refer the reader to Lancaster and Rodman [64] for details, and we just mention
that these hypotheses are typically satisfied in control theory applications. This solution X+ is often called stabilizing (because
of property 3) or maximal (because of property 2).

8 Federico Poloni

Various properties of the matrix  in (26) follow from the fact that it belongs to a certain class of structured matrices. Let
J =

[

0 In
−In 0

]

∈ ℂ2n×2n. A matrixM ∈ ℂ2n×2n is called symplectic ifM∗JM = J , i.e., if it is unitary for the non-standard scalar
product associated to J . The following properties hold.

Lemma 2. (1) A matrix in the form (26) is symplectic if and only ifG = G∗, Q = Q∗, and the two blocks calledA,A∗ in (26)
are one the conjugate transpose of the other.

(2) If � is an eigenvalue of a symplectic matrix with right eigenvector v, then �
−1

is an eigenvalue of the same matrix with
left eigenvector v∗J .

(3) Under the hypotheses of Theorem 1 (including the d-detectability one in the end), then the 2n eigenvalues of  are
(counting multiplicities) the n eigenvalues �1, �2,… , �n of (I + GX+)−1A inside the unit circle, and the n eigenvalues
�i
−1
, i = 1, 2,… , n outside the unit circle. In particular,

[I
X+

]

spans the unique invariant subspace of  of dimension n
all of whose associated eigenvalues lie in the unit circle.

Parts 1 and 2 are easy to verify from the form (26) and the definition of symplectic matrix, respectively. To prove Part 3, plug
X+ into (25) and notice that K has n eigenvalues �1, �2,… , �n inside the unit circle; these are also eigenvalues of  . By Part 2,
all other eigenvalues lie outside the unit circle.

4.2 Algorithms
The shape of (23) suggests the iteration

Xk+1 = Q + A∗Xk(I + GXk)−1A, X0 = 0. (27)

This iteration can be rewritten in a form analogous to (25):
[

A 0
−Q I

] [

I
Xk+1

]

=
[

I G
0 A∗

] [

I
Xk

]

Kk, Kk = (I + GXk)−1A. (28)

Equivalently, one can write it as
[

U1k
U2k

]

= −1
[

I
Xk

]

,
[

I
Xk+1

]

=
[

U1k
U2k

]

(U1k)−1. (29)

This form highlights a connection with (inverse) subspace iteration (or orthogonal iteration), a classical generalization of the
(inverse) power method to find multiple eigenvalues [93]. Indeed, we start from the 2n × n matrix

[I
X0

]

=
[

I
0
]

, and at each step
we first multiply it by −1, and then we normalize the result by imposing that the first block is I . In inverse subspace iteration,
we would make the same multiplication, but then we would normalize the result by taking the Q factor of its QR factorization,
instead.
It follows from classical convergence results for the subspace iteration (see e.g. Watkins [93, Section 5.1]) that (29) converges

to the invariant subspace associated to the n largest eigenvalues (in modulus) of −1, i.e., the n smallest eigenvalues of  . In
view of Part 3 of Lemma 2, this subspace is precisely Im

[I
X+

]

. Note that this unusual normalization is not problematic, since at
each step of the iteration (and in the limit) the subspace does admit a basis in which the first n rows form an identity matrix. This
argument shows the convergence of (27) to the maximal solution, under the d-detectability condition mentioned in Theorem 1,
which ensures that there are no eigenvalues on the unit circle.
How would one construct a ‘squaring’ variant of this method? Note that that

[

U1k
U2k

]

= −k
[

I
0
]

; hence one can think of
computing −2k by iterated squaring to obtain X2k in k steps. However, this idea would be problematic numerically, because
it amounts to delaying the normalization in subspace iteration until the very last step. The key to solve this issue is using the
LU-like decomposition obtained from (26)

−1 =
[

A 0
−Q I

]−1 [I G
0 A∗

]

.

We seek an analogous decomposition for the powers of −1, i.e.,

−2k =
[

Ak 0
−Qk I

]−1 [I Gk
0 A∗k

]

. (30)

The following result shows how to compute this factorization with just one matrix inversion.

Federico Poloni 9

Lemma 3. [81] LetM1,M2, N1, N2 ∈ ℂ2n×n. The factorization

[

M1 M2
]−1 [N1 N2

]

=
[

A11 0
A21 In

]−1 [In A21
0 A22

]

, A11, A12, A21, A22 ∈ ℂn×n (31)

exists if and only if
[

N1 M2
]

is invertible, and in that case its blocks Aij are given by
[

A11 A12
A21 A22

]

=
[

N1 M2
]−1 [M1 N2

]

.

A proof follows from noticing that the factorization (31) is equivalent to the existence of a matrix K ∈ ℂ2n×2n such that

K
[

M1 M2 N1 N2
]

=
[

A11 0 In A12
A21 In 0 A22

]

,

and rearranging block columns in this expression.
One can apply Lemma 3 (with [M1M2] = I and [N1N2] =

[

I Gk
0 A∗k

][

Ak 0
−Qk I

]−1
) to find a factorization of the term in

parentheses in

−2k+1 = −2k−2k =
[

Ak 0
−Qk I

]−1([

I Gk
0 A∗k

] [

Ak 0
−Qk I

]−1)[

I Gk
0 A∗k

]

, (32)

and use it to construct a decomposition (30) of−2k+1 starting from that of−2k . The fact that the involvedmatrices are symplectic
can be used to prove that the relations A11 = A∗22, A21 = A∗21, A12 = A∗12 will hold for the computed coefficients. We omit the
details of this computation; what matters are the resulting formulas

Ak+1 = Ak(I + GkQk)−1Ak, (33a)
Gk+1 = Gk + AkGk(I +QkGk)−1A∗k, (33b)
Qk+1 = Qk + A∗k(I +QkGk)−1QkAk, (33c)

with A0 = A,Q0 = Q,G0 = G. These formulas are all we need to formulate a ‘squaring’ version of (27): for each k it holds that

−2k
[

In
0

]

=
[

I
Qk

]

A−1k ,

hence Qk = X2k , the 2kth iterate of (27). It is not difficult to show by induction that 0 ⪯ Q0 ⪯ Q1 ⪯ ⋯ ≤ Qk ⪯ … , and we
have already argued above that Qk = X2k → X+. In view of the interpretation as subspace iteration, the convergence speed
of (27) is linear and proportional to the ratio between the absolute values of the (n + 1)st and nth eigenvalue of  , i.e., between
� ∶= �((I + GX+)A) < 1 and its inverse �−1. The convergence speed of its doubling variant (33) is then quadratic with the
same ratio [57].
The iteration (33), which goes under the name of structure-preserving doubling algorithm, has been used to solve DAREs and

related equations by various authors, starting from Chu, Fan, Lin and Wang [35], but it also appears much earlier: for instance,
Anderson [2] gave it an explicit system-theoretical meaning as constructing an equivalent system with the same DARE solution.
The reader may find in the literature slightly different versions of (33), which are equivalent to them thanks to the identities (24).
More general versions of the factorization (30) and of the iteration (33), which guarantee existence and boundedness of the

iterates under much weaker conditions, have been explored by Mehrmann and Poloni [73]. Kuo, Lin and Shieh [63] studied the
theoretical properties of the factorization (30) for general powers  t, t ∈ ℝ, drawing a parallel with the so-called Toda flow for
the QR algorithm.
The limit of the monotonic sequence 0 ⪯ G0 ⪯ G1 ⪯ G2 ⪯ … also has a meaning: it is the maximal solution Y+ of the

so-called dual equation
Y = G + AY (I +QY)−1A∗, (34)

which is obtained swapping Q with G and A with A∗ in (23). Indeed, SDA for the DARE (34) is obtained by swapping Q with
G and A with A∗ in (33), but this transformation leaves the formulas unchanged. The dual equation (34) appears sometimes in
applications together with (23). From the point of view of linear algebra, the most interesting feature of its solution Y+ is that
[−Y+

I

]

is a basis matrix for the invariant subspace associated to the other eigenvalues of  , those outside the unit circle. Indeed,
(30) gives

2k
[

0
I

]

=
[

−Gk
In

]

A−∗k ,

10 Federico Poloni

so
[−Y+

I

]

is the limit of subspace iteration applied to  instead of −1, with initial value
[

0
I
]

. In particular, putting all pieces
together, the following Wiener-Hopf factorization holds

 =
[

−Y+ I
I X+

]

[

(

(I +QY+)−1A∗
)−1 0

0 (I + GX+)−1A

]

[

−Y+ I
I X+

]−1

. (35)

This factorization relates explicitly the solutions X+, Y+ to a block diagonalization of  .
An interesting limit case is the one when only the first part of Theorem 1 holds, (Q,A) is not d-detectable, and the solution

X+ exists but �((I + GX+)A) = 1. In this case,  has eigenvalues on the unit circle, and it can be proved that all its Jordan
blocks relative to these eigenvalues have even size: one can use a result in Lancaster and Rodman[64, Theorem 12.2.3], after
taking a factorization G = BR−1B∗ with R ≻ 0 and using another result in the same book [64, Theorem 12.2.1] to show that
the hypothesis Ψ(�) ≻ 0 holds.
It turns out that in this case the two iterations still converge, although (27) becomes sublinear and (33) becomes linear with

rate 1∕2. This is shown by Chiang, Chu, Guo, Huang, Lin and Xu [32]; the reader can recognize that the key step there is the
study of the subspace iteration in presence of Jordan blocks of even multiplicity.
Note that the case in which the assumptionsQ ⪰ 0, G ⪰ 0 do not hold is trickier, because there are examples where (23) does

not have a stabilizing solution and  has Jordan blocks of odd size with eigenvalues on the unit circle: an explicit example is

A =
[

1 3
0 1

]

, G =
[

1 1
1 1

]

, Q =
[

1 0
0 −10

]

, (36)

which produces a matrix  with two simple eigenvalues (Jordan blocks of size 1) �± ≈ 0.598±0.801iwith |�| = 1. Surprisingly,
eigenvalues on the unit circle are a generic phenomenon for symplectic matrices, which is preserved under perturbations: a small
perturbation of the matrices in (36) will produce a perturbed ̃ with two simple eigenvalues �̃± that satisfy exactly |�| = 1,
because otherwise Part 2 of Lemma 2 would be violated.

5 CONTINUOUS-TIME RICCATI EQUATIONS

We consider the equation

Q + A∗X +XA −XGX = 0, G = G∗ ⪰ 0, Q = Q∗ ⪰ 0, A, G,Q,X ∈ ℂn×n, (37)

to be solved for X = X∗ ⪰ 0. This equation is known as continuous-time algebraic Riccati equation (CARE), and arises in
various problems connected to continuous-time control theory [39, Chapter 10]. Despite the very different form, this equation
is a natural analogue of the DARE (23), exactly like Stein and Lyapunov equations are related to each other.

5.1 Solution properties
For each solution X of the CARE, it holds

[

A −G
−Q −A∗

] [

I
X

]

=
[

I
X

]

M, M = A − GX. (38)

Hence,
[

I
X
]

is an invariant subspace of

 =
[

A −G
−Q −A∗

]

. (39)

Like in the discrete-time case, this relation implies that the n eigenvalues ofM are a subset of those of; moreover, we can

construct a solution X = U2U−1
1 to (37) from an invariant subspace Im

[

U1
U2

]

, whenever U1 is invertible. Among all solutions,

there is a preferred one.

Theorem 2. [64, Theorems 7.9.1, 9.1.2 and 9.1.5] Assume that Q ⪰ 0, G ⪰ 0, and (A,G) is c-stabilizable. Then, (37) has a
(unique) solution X+ such that

(1) X+ = X∗
+ ⪰ 0;

(2) X+ ⪰ X for any other Hermitian solution X;

Federico Poloni 11

(3) Λ(A − GX+) ⊂ LHP.

If, in addition, (Q,A) is c-detectable, then Λ(A − GX+) ⊂ LHP.

C-stabilizable and c-detectable are defined analogously to their discrete-time counterparts, with the only difference that the
domain {|�| < 1} is replaced by the left half-plane LHP. Again, we do not comment on this theorem, whose proof is not obvious,
and refer the reader to Lancaster and Rodman [64].
Exactly as in the discrete-time case, various interesting properties of the matrix in (39) follow from the fact that it belongs to

a certain class of structured matrices. A matrixM ∈ ℂ2n×2n is calledHamiltonian if−M∗J = JM , i.e., if it is skew-self-adjoint
with respect to the non-standard scalar product induced by J . The following result holds.

Lemma 4. (1) A matrix in the form (39) is Hamiltonian if and only if G = G∗, Q = Q∗, and the two matrices called A,A∗
in (39) are one the conjugate transpose of the other.

(2) If � is an eigenvalue of a Hamiltonian matrix with right eigenvector v, then −� is an eigenvalue of the same matrix with
left eigenvector v∗J .

(3) If the hypotheses of Theorem 2 hold (including the c-detectability one), then the 2n eigenvalues of  are (counting
multiplicities) the n eigenvalues �1,… , �n of A − GX+ in the left half-plane, and the n eigenvalues −�i, i = 1,… , n in
the right half-plane. In particular,

[I
X+

]

spans the unique invariant subspace of of dimension n all of whose associated
eigenvalues lie in the left half-plane.

Parts 1 and 2 are easy to verify from the block decomposition (39) and the definition of Hamiltonian matrix. To prove Part 3,
plug X+ into (25) and notice thatM has n eigenvalues �1, �2,… , �n in the left half-plane; these are also eigenvalues of  . By
Part 2, all other eigenvalues lie in the right half-plane.
The similarities between (38) and (25) suggest that CAREs can be turned into DAREs (and vice versa) by converting the two

associated invariant subspace problems; the ingredient to turn one into the other is the Cayley transform.

Lemma 5. Let A,G = G∗, Q = Q∗ be given, and take � > 0. Set
[

Ad Gd
−Qd A∗d

]

=
[

A − �I −G
Q A∗ − �I

]−1 [A + �I −G
Q A∗ + �I

]

= I + 2�
[

A − �I −G
Q A∗ − �I

]−1

. (40)

Assume that the inverse exists, and that Ad is invertible. Then, the DARE with coefficients Ad , Gd , Qd has the same solutions
as the CARE with coefficients A,G,Q (and, in particular, the same maximal / stabilizing solution).

These formulas (40) follow from constructing  ∶= c() = ( − �I)−1( + �I), and then applying Lemma 3 to construct
a factorization

 =
[

I Gd
0 A∗d

]−1 [Ad 0
−Qd I

]

.

The matrix  that we have constructed has the same invariant subspaces as  because c(⋅) is an invertible rational function:
indeed, from (38), it follows that


[

I
X

]

= c()
[

I
X

]

=
[

I
X

]

c(M), M = A − GX.

This relation coincides with (25), and shows that a solutionX of the CARE is also a solution of the DARE constructed with (40).
Thanks to Lemma (1),M has all its eigenvalues in LHP if and only if c(M) has all its eigenvalues inside the unit circle, so the
stabilizing property of the solution is preserved.
Methods to transform DAREs into CAREs and vice versa based on the Cayley transform appear frequently in the literature

starting from the 1960s; see for instanceMehrmann [72], a paper which explores these transformations andmentions the presence
of many “folklore results” based on the Cayley transforms, relating the properties of the two associated equations.
Even if we restrict ourselves to the assumption that Ad is invertible when treating the DARE, it is important to remark that

Lemma 5 does not generalize completely to the case when Ad is singular [72, Section 6]. By considering the poles of c() as a
function of �, one sees that Ad is singular if and only if � ∈ Λ(). When this happens, even if  ‘exists’ in a suitable sense as
an equivalent matrix pencil, an invariant subspace of  for which � ∈ Λ(M) cannot be converted to the form (25), but only to

12 Federico Poloni

the subtly weaker form
[

Ad 0
−Qd I

] [

I
X

]

(M − �I) =
[

I Gd
0 A∗d

] [

I
X

]

(M + �I), M = A − GX. (41)

with an additional singular matrixM − �I in the left-hand side. Thus we cannot write the equality (25), which identifies X as
a solution of the DARE: hence the DARE has fewer solutions than the CARE. The stabilizing solution is always preserved by
this transformation, though, because Λ(M) ⊂ LHP cannot contain � > 0.

5.2 Algorithms
In view of the relation between DAREs and CAREs that we have just outlined, a natural algorithm is using the formulas (40) to
convert (37) into an equivalent (23) and solving it using (33). This algorithm has been suggested by Chu, Fan and Lin [34] as
a doubling algorithm for CAREs. This algorithm inherits all the nice convergence properties of SDA for DAREs; in particular,
among them, the fact that it also works (at reduced linear speed) on problems in whichA−GX+ has eigenvalues on the imaginary
axis [32].
While SDA works well in general, a delicate point is the choice of the shift value �. In principle almost every choice of �

works, since−�I is singular only for at most 2n values of �, but in practice choosing the wrong value of � may affect accuracy
negatively. Dangers arise not from singularity of−�I (which is actually harmless with a matrix pencil formulation), but from
singularity in (40), and also from taking � too large or too small by orders of magnitude. A heuristic approach based on golden
section search has been suggested [34].
In practice, one would prefer to avoid the Cayley transform or at least delay it as much as possible; this observation leads to

another popular algorithm for CAREs. We start from the following observation.

Lemma 6. If  = c() (with a parameter � ∈ ℝ), then

2 = c
(1
2
(

 + �2−1)
)

. (42)

This identity can be verified directly, using the fact that rational functions of the same matrix all commute with each other.
Applying this identity repeatedly, we get 2k = c(k), where

k+1 =
1
2
(

k + �2−1
k

)

, 0 = . (43)

Hence one can hold off the Cayley transform and just compute the sequence k directly, starting from (39). This constructs a
sequence which represents implicitly 2k .
Constructing the matrices k is numerically much less troublesome than constructing explicitly 2k or its inverse −2k .

Indeed, it is instructive to consider the behaviour of these iterations in a basis in which  is diagonal (when it exists). Let �
be a generic diagonal entry (i.e., an eigenvalue) of . Then,  = c() has the corresponding eigenvalue c(�), and 2k has the
eigenvalue c(�)2k . If � ∈ LHP, then |c(�)| < 1 (Lemma 1), and hence c(�)2k → 0 when k → ∞. Similarly, if � is in the right
half-plane, then |c(�)| > 1 and c(�)2k → ∞. Thus 2k (as well as its inverse) has some eigenvalues that converge to zero, and
some that diverge to infinity, as k grows. This is one of the reasons why it is preferable to keep  in its factored form (30). On
the other hand, the eigenvalues of k converge to finite values c−1(0) = −� and c−1(∞) = �, so this computation suggests that
the direct computation of k is feasible.
The sign function method[83, 40, 46] to solve CAREs consists exactly in computing the iteration (43) up to convergence,

obtaining a matrix∞ = limk→∞k that has numerically n eigenvalues equal to � ∈ RHP and n equal to −� ∈ LHP, and then
computing

Im
[

U1
U2

]

= ker(∞ + �I), U1, U2 ∈ ℂn×n, X+ = U2U−1
1 . (44)

The method takes its name from the fact that the limit matrix∞ (for � = 1) is the so-calledmatrix sign function of. We refer
the reader to its analysis in Higham [56, Chapter 5], in which one clearly sees that one of the main ingredients is the formula 42
relating the iteration to repeated squaring.
Scaling is an important detail that deserves a discussion. Replacing  with a positive multiple of itself corresponds to mul-

tiplying each term of (37) by a positive quantity; this operation does not change the solutions of the equation, nor the maximal
/ stabilizing properties of X+. In SDA, scaling is limited to choosing the parameter of the initial Cayley transform, but in the

Federico Poloni 13

sign method we have more freedom: we can take a different �k at each step of (43). We remark that scaling for the sign method
is usually presented in the literature in a slightly different form: one replaces (43) with

k+1 =
1
2
(

(�−1k k) + (�−1k k)−1
)

. (45)

The two forms are essentially equivalent, as they return iterates k that differ only by a multiplicative factor, which is then
irrelevant in the final step (44). Irrespective of formulation, the main result is that a judicious choice of scaling can speed up the
convergence of (43) or (45). A cheap and effective choice of scaling, determinantal scaling, �k = (detk)

1
n has been suggested

by Byers [29]. Other related choices of scaling and their performances have been discussed by Higham [56, Chapter 5] and
Kenney and Laub [60]. The general message is that scaling has a great impact in the first steps of the iteration, when it can
greatly improve convergence, but once the residual starts to decrease its effect in the later steps becomes negligible.
Scaling also has an impact on stability; the stability of the sign iteration as a method to compute invariant subspaces (and

hence ultimately Riccati solutions) has been studied by Bai and Demmel [3] and Byers, He and Mehrmann [30]. The two
interesting messages are that (expectedly) the sign function method suffers when  is ill-conditioned, but that (unexpectedly)
the invariant subspaces extracted from∞ has better stability properties than∞ itself. A version of the sign iteration that uses
matrix pencils to reduce the impact of these inversions have been suggested by Benner and Byers [11].
Another useful computational detail is that one can rewrite the sign function method (43) as

k+1 =
1
2
(k + �2J−1

k J), k = kJ ,

which is cheaper because one can take advantage of the fact that the matrices k are Hermitian [29]. Indeed, it is a general
observation that most of the matrix algebra operations needed in doubling-type algorithms can be reduced to operations on
symmetric/Hermitian matrices; see for instance also (40).

5.3 Remarks
The formulation in the sign iteration allows one to introduce some form of per-iteration scaling in the setting of a doubling-type
algorithm. It would be interesting to see if this scaling can be transferred to the SDA setting, and which computational advantage
it brings. Note that, in view of (42), scaling the sign iteration is equivalent to changing the parameter � in the Cayley transform.
So SDA does incorporate a form of scaling, but only at the first iteration, when one chooses �.
In general, it is unclear if scaling after the first iteration produces major gains in convergence speed. It would be appealing to

try and study this kind of scaling with the tools of polynomial and rational approximation, like it has been done in more details
for non-doubling algorithms, with the aim of deriving optimal choices for the parameters � and �k.
There is another classical iterative algorithm to solve algebraic Riccati equations (both in discrete and continuous time), and

it is Newton’s method. For the simpler case of CAREs, Newton’s method [61] consists in determining Xk+1 by solving at each
step the Lyapunov equation

(A − GXk)∗(Xk+1 −Xk) + (Xk+1 −Xk)(A − GXk) = −(Q + A∗Xk +XkA −XkGXk) (46)

or the equivalent one
(A − GXk)∗Xk+1 +Xk+1(A − GXk) = −Q −XkGXk.

A line search procedure, which improves convergence speed in practice, has been introduced by Benner and Byers [10]. The
method can be used, in particular, for large and sparse equations in conjunction with low-rank ADI [13].
The reader may wonder if there is an explicit relation between doubling algorithms and Newton-type algorithms, considering

especially that both exhibit quadratic convergence (which, moreover, in both cases degrades to linear with rate 1∕2 if A−GX+
has purely imaginary eigenvalues [51]). The answer, unfortunately, seems to be no. An argument that suggests that the two
iterations are genuinely different is that the iterates produced by Newton’s method approach X+ from above [61] (i.e., X1 ⪰
X2 ⪰⋯ ⪰ Xk ⪰ Xk+1 ⪰⋯ ⪰ X+), not from below like the iterates Qk of SDA in (33c).
Some more recent algorithms for large and sparse CAREs essentially merge the Newton step (46) and the ADI iteration (20)

into a single iteration [68, 88, 9]. It is again unclear whether there is an explicit relation between these two families of methods.
An interesting question is what is the ‘non-doubling’ analogue of the sign method and of SDA. One can convert the CARE

to discrete-time using (40) and formulate (27), but to our knowledge this method does not have a more appealing presentation
in terms of a simple iterative method for (37), like it has in all the other discrete-time examples.

14 Federico Poloni

Another ‘philosophical’ observation is that the sign function method does not avoid a Cayley-type transformation; it merely
pushes it back to the very last step (44), where the sub-expression + �I appears; this operation takes the role of a discretizing
transformation that maps the eigenvalue−� into a value inside a given circle and the eigenvalue � into one outside. A discretizing
transformation of some sort seems inevitable in this family of algorithms, although delaying it until the very last step seems
beneficial for accuracy, because at that point we have complete control of the location of eigenvalues.

6 UNILATERAL EQUATIONS AND NMES

We end our discussion of the family of Riccati-type equations with a pair of oft-neglected cousins, and present them with an
application that shows clearly the relationship between them. Consider the matrix Laurent polynomial

P (z) = Az−1 +Q + A∗z, Q = Q∗ ≻ 0, A,Q ∈ ℂn×n. (47)

The problem of spectral factorization (of quadratic matrix polynomials) consists in determining a factorization

P (z) = (zY ∗ − I)X(z−1Y − I), X = X∗ ≻ 0, X, Y ∈ ℂn×n, (48)

such that �(Y) ≤ 1. In particular, the left factor is invertible for |z| < 1, and the right factor is invertible for |z| > 1.
Equating coefficients in (47) and (48) gives −XY = A, Q = X + Y ∗XY . We can eliminate one among X and Y from this

system of two equations, getting two equations with a single unknown each

0 = A +QY + A∗Y 2, (49)
Q = X + A∗X−1A. (50)

The first one (49) is called unilateral quadratic matrix equation [19], while the second one (50) is known with the (rather
undescriptive) name of nonlinear matrix equation (NME) [53, 52, 57].
While (49) looksmore appealing at first, as it reveals direct ties with the palindromic quadratic eigenvalue problem [53, 52, 69],

it is in fact (50) that reveals more structure: for instance, (50) has Hermitian solutions (see below), while the structure in the
solutions of (49) is much less apparent.

6.1 Solution properties
It follows from (48) that P (�) ⪰ 0 for each � that belongs to the unit circle (hence �−1 = �̄), so this is a necessary condition for
the solvability of this problem. It can be proved that it is sufficient, too, and that a maximal / stabilizing solution exists.

Theorem 3. [44, Theorem 2.2] Assume that P (z) is regular and P (�) ⪰ 0 for each � on the unit circle. Then, (50) has a (unique)
solution X+ such that

(1) X+ = X∗
+ ≻ 0;

(2) X+ ⪰ X for any other Hermitian solution X;

(3) �(Y) = �(−X−1
+ A) ≤ 1

If, in addition, P (�) ≻ 0 for each � on the unit circle, then �(−X−1
+ A) < 1.

Once again, we can rewrite (50) as an invariant subspace problem.
[

A 0
−Q I

] [

I
X

]

=
[

0 −I
A∗ 0

] [

I
X

]

Y , Y = −X−1A. (51)

We assume again that A is invertible to avoid technicalities with matrix pencils. The matrix

 =
[

0 −I
A∗ 0

]−1 [A 0
−Q I

]

(52)

is symplectic, and so is the slightly more general form
[

G −I
A∗ 0

]−1 [A 0
−Q I

]

. (53)

Federico Poloni 15

Lemma 7. (1) A matrix in the form (53) is symplectic if and only ifG = G∗, Q = Q∗, and the two blocks calledA,A∗ in (26)
are one the conjugate transpose of the other.

(2) If � is an eigenvalue of a symplectic matrix with right eigenvector v, then �
−1

is an eigenvalue of the same matrix with
left eigenvector v∗J .

(3) If the hypotheses of Theorem 3 hold (including the strict positivity one in the end), then the 2n eigenvalues of  are
(counting multiplicities) the n eigenvalues �1, �2,… , �n of −X−1

+ A inside the unit circle, and the n eigenvalues �i
−1
,

i = 1, 2,… , n outside the unit circle.

The symplectic structure behind this equation is the same one as the DARE, and indeed Part 2 of this lemma is identical to
Part 2 of Lemma 2. Indeed, Engwerda, Ran and Rijkeboer [44, Section 7] note that (50) can be reduced to a DARE, although it
is one that does not fall inside our framework since it has G ⪯ 0.

6.2 Algorithms
The formulation (50) suggests immediately the iterative algorithm

Xk+1 = Q − A∗X−1
k A. (54)

Clearly we cannot start this iteration from 0, so we take X1 = Q instead. An interesting interpretation of this algorithm is as
iterated Schur complements of block Toeplitz tridiagonal matrices. The Schur complement of the (1, 1) block of the tridiagonal
matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Xk A∗

A Q A∗

A Q ⋱
⋱ ⋱ A∗

A Q

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ℎ blocks

,

is
⎡

⎢

⎢

⎢

⎢

⎢

⎣

Xk+1 A∗

A Q A∗

A Q ⋱
⋱ ⋱ A∗

A Q

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ℎ − 1 blocks

.

Hence the whole iteration can be interpreted as constructing successive Schur complements of the tridiagonal matrix

m ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Q A∗

A Q A∗

A Q ⋱
⋱ ⋱ A∗

A Q

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
m blocks

. (55)

It can be seen that m is positive semidefinite, under the assumptions of Theorem 3: a quick sketch of a proof is as follows. The
matrix m is a submatrix of

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Q A∗ A
A Q A∗

A Q ⋱
⋱ ⋱ A∗

A∗ A Q

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= (Φ⊗ I)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

P (1)
P (�)

P (�2)
⋱

P (�−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(Φ⊗ I)−1,

which the equation shows to be similar (using the Fourier matrix Φ and properties of Fourier transforms) to a block diagonal
matrix that contains P (z) from (47) evaluated in the roots of unity 1, � , �2,… , �−1.

16 Federico Poloni

Hence, in particular, all the Xk are positive semidefinite. One can further show that Q = X0 ⪰ X1 ⪰ X2 ⪰ ⋯ ⪰ Xk ⪰ … .
The sequenceXk is monotonic and bounded from below, hence it converges, and one can show that its limit isX+ [44, Section 4]
(to do this, verify the property in Point (2) of Theorem 3 by proving that Xk ⪰ X at each step of the iteration).
A doubling variant of (54) can be constructed starting from this Schur complement interpretation. The Schur complement of

the submatrix formed by the odd-numbered blocks (1, 3, 5,… , 2m − 1) of

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Uk A∗k
Ak Uk A∗k

Ak ⋱ ⋱
⋱ Uk A∗k

Ak Qk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2m blocks

,

is
⎡

⎢

⎢

⎢

⎢

⎢

⎣

Uk+1 A∗k+1
Ak+1 Uk+1 A∗k+1

Ak+1 ⋱ ⋱
⋱ Uk+1 A∗k+1

Ak+1 Qk+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
m blocks

,

with

Ak+1 = −AkU−1
k Ak, (56a)

Qk+1 = Qk − A∗kU
−1
k Ak, (56b)

Uk+1 = Uk − A∗kU
−1
k Ak − AkU−1

k A∗k. (56c)

We can construct the Schur complement of the first 2k − 1 blocks of 2k in two different ways: either we make 2k − 1 iterations
of (54), resulting in X2k , or we make k iterations of (56), starting from A0 = A,Q0 = U0 = Q, resulting in Qk. This shows that
Qk = X2k .
This peculiar way to take Schur complements of Toeplitz tridiagonal matrices was introduced by Buzbee, Golub and Niel-

son [27] to solve certain differential equations, and then later applied to matrix equations similar to (49) and (50) by Bini,
Gemignani, and Meini [17, 18, 75]. The iteration (56) is known as cyclic reduction.
One can derive the same iteration from repeated squaring, in the same way as we obtained SDA as a modified subspace

iteration [67]. We seek formulas to update a factorization of the kind

−2k =
[

Ak 0
−Qk I

]−1 [Gk −I
A∗k 0

]

.

To do this, we write (analogously to (32))

−2k+1 = −2k−2k =
[

Ak 0
−Qk I

]−1([

Gk −I
A∗k 0

] [

Ak 0
−Qk I

]−1)[

Gk −I
A∗k 0

]

and use Lemma 3 (with [M1M2] = I2n) to find a factorization in the form (31) of the term in parentheses, which then combines
with the outer terms to produce the sought decomposition. The resulting formulas are

Ak+1 = −Ak(Qk − Gk)−1Ak, (57a)
Qk+1 = Qk − A∗k(Qk − Gk)−1Ak, (57b)
Gk+1 = Gk + Ak(Qk − Gk)−1A∗k, (57c)

and one sees that they coincide with (56), after setting Uk = Qk −Gk. With an argument analogous to the one in Section 4, one
sees that

−2k
[

0
−I

]

=
[

I
Qk

]

,

thus
[I
Qk

]

converges to a basis of the invariant subspace associated to the eigenvalues of  inside the unit circle.
This formulation (57) is known as SDA-II [67, 36].

Federico Poloni 17

6.3 Remarks
Even though we have mentioned spectral factorization only here, it can be formulated for more complicated matrix functions
also in the context of DAREs and CAREs; in fact, it is a classical topic, and another facet of the multiple connections between
matrix equations and control theory [4, 5, 87].
The interpretation as Schur complement is a powerful trick, which reveals a greater picture in this family of methods. It may

possibly be used to understandmore about the stability of thesemethods, since Schur complementation andGaussian elimination
on symmetric positive definite matrices is a well understood topic from the numerical point of view.
Many authors have studied variants of (50). Typically, one replaces the nonlinear term with various functions of the form

A∗f (X)A, or adds more nonlinear terms. In the modified versions, it is often possible to prove convergence of the fixed-point
algorithm with arguments of monotonicity, and prove the existence of a solution under some assumptions. However, after any
nontrivial modification the connection with invariant subspaces is lost. This fact, coupled with lack of applications, makes these
variants much less interesting than the original equation, in the eyes of the author.

7 NONSYMMETRIC VARIANTS IN APPLIED PROBABILITY

Many of the equations treated here have nonsymmetric variants which appear naturally in queuing theory, a sub-field of applied
probability. In the analysis of quasi-birth-death models [65, 21], one encounters equations of the form

0 = A +QY + BY 2, A, B,Q, Y ∈ ℝn×n, (58)

where A,B ≥ 0 (we use the notation M ≥ N to denote that a matrix M is entrywise larger than N , i.e., Mij ≥ Nij for all
i, j), and the matrix −Q is an M-matrix, i.e., Qij ≥ 0 for i ≠ j and Λ(Q) ⊂ LHP. These equations have a solution Y ≥ 0 which
has a natural probabilistic interpretation. The solution X to X = Q − BX−1A and the solution of the associated dual equation
0 = Z2A +ZQ + B also appear naturally and have a related probabilistic meaning [65, Chapter 6][21, Section 5.6].
Similarly, the equation

Q + BX +XA −XGX = 0, Q,X ∈ ℝm×n, A ∈ ℝn×n, B ∈ ℝm×m, G ∈ ℝn×m. (59)

appears in the study of so-called fluid queues, or stochastic flow models [84, 59, 38]. The matrices A,B are M-matrices, while
G,−Q ≥ 0. One can formulate nonsymmetric analogues of basic matrix iterations and doubling algorithms. Unfortunately, the
theory does not translate perfectly to this setting, due to the sign differences between the two cases: in the symmetric equations
G,Q ⪰ 0, while in the nonsymmetric case G,−Q ≥ 0. Due to this asymmetry, the signs in the two cases do not match, and one
needs to formulate different arguments. For instance, in the symmetric case one proves that the inverses that appear in (33) exist
because Gk ⪰ 0, Qk ⪰ 0; while in its nonsymmetric analogue Gk,−Qk ≥ 0, and one proves that I + GkQk and I +QkGk are
M-matrices to show that those inverses exist.
The equation (23) does not appear to have an immediate analogue in queuing theory, but this fact seems just an accident, since

some of the results that involve (59) could have been formulated with an equivalent equation resembling more (23) than (37)
instead. There is a distinction between discrete-time and continuous-time models also in applied probability, but in many cases
it does not affect directly the shape of the equations; for instance (58) takes the same form for discrete- and continuous-time
QBDs. The role of discretizing transformations such as Cayley transforms in this context has been studied by Bini, Meini, and
Poloni [22].
For reasons of space, we cannot give here a complete treatment of these nonsymmetric variants. Huang, Li and Lin [57] in

their book enter into more detail about the doubling algorithms for these equations, but a great part of the theory (including
existence results and probabilistic interpretations for the iterates of various numerical methods) is unfortunately available only
in the queuing theory literature, strictly entangled with its applications.
An interesting remark is that the M-matrix structure allows one to construct stability proofs more easily. Conditioning and

stability results for these equations have been studied by some authors [98, 97, 76, 96, 31], relying heavily on the sign and M-
matrix structure. The forward stability proof in Nguyen and Poloni [76] is, to date, one of the very few complete stability proofs
for a doubling-type algorithm.

18 Federico Poloni

8 CONCLUSIONS

In this paper, we presented from a consistent point of view doubling algorithms for symmetric Riccati-type equations, relating
them to the basic iterations of which they are a ‘squaring’ variant. We have included various algorithms that belong to the same
family but have appeared independently, such as the sign iteration and cyclic reduction. We have outlined relations between
doubling algorithms, the subspace iteration, ADI-type and Krylov subspace methods, and Schur complementation of tridiagonal
block Toeplitz matrices. This theory, in turn, forms only a small portion of the far larger topic of numerical algorithms for Riccati-
type equations and control theory. This field of research is an incredibly vast one, spanning at least six decades of literature and
various communities between engineering and mathematics, so we have surely omitted or forgotten many relevant contributions;
we apologize with the missing authors.
We hope that the reader can benefit from our paper by both gaining theoretical insight, and having available some numerical

algorithms for these equations. Indeed, with respect to many competitors, doubling-based algorithms have the advantage that
they reduce to the simple coupled matrix iterations (33) or (56), which are easy to code and fast to run in many computational
environments.
Another interesting remark that was suggested by a referee is that some recent lines of research consider this family of matrix

equations under different types of data sparsity than low-rank: for instance, Palitta and Simoncini [77] consider banded data, and
Kressner, Massei and Robol [62] andMassei, Palitta and Robol [70] consider semi-separable (low-rank off-diagonal blocks) and
hierarchically semiseparable structures. Much earlier, Grasedyck, Hackbusch and Khoromskij [49] considered using hierarchical
matrices to solve Riccati equations. All these structures are (at least up to a degree) preserved by the operations involved in
doubling methods [24, 95]. These novel techniques may open up new lines of research for doubling-type algorithms.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank. Matrix Riccati equations. Systems & Control: Foundations &
Applications. Birkhäuser Verlag, Basel, 2003. In control and systems theory. doi:10.1007/978-3-0348-8081-7.

[2] B. D. O. Anderson. Second-order convergent algorithms for the steady-state Riccati equation. Internat. J. Control,
28(2):295–306, 1978. doi:10.1080/00207177808922455.

[3] Z. Bai and J. Demmel. Using the matrix sign function to compute invariant subspaces. SIAM J. Matrix Anal. Appl.,
19(1):205–225, 1998. doi:10.1137/S0895479896297719.

[4] H. Bart, I. Gohberg, M. A. Kaashoek, and A. C. M. Ran. Factorization of matrix and operator functions: the state space
method, volume 178 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2008. Linear Operators
and Linear Systems.

[5] H. Bart, I. Gohberg,M. A. Kaashoek, andA. C.M. Ran. A state space approach to canonical factorizationwith applications,
volume 200 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel; Birkhäuser Verlag, Basel, 2010.
Linear Operators and Linear Systems. doi:10.1007/978-3-7643-8753-2.

[6] R. H. Bartels and G. W. Stewart. Algorithm 432: solution of the matrix equation AX + XB = C . Comm. ACM,
15:820–826, 1972.

[7] B. Beckermann and A. Townsend. Bounds on the singular values of matrices with displacement structure. SIAM Rev.,
61(2):319–344, 2019. Revised reprint of "On the singular values of matrices with displacement structure" [MR3717820].
doi:10.1137/19M1244433.

[8] P. Benner, T. Breiten, and T. Damm. Generalised tangential interpolation for model reduction of discrete-time MIMO
bilinear systems. Internat. J. Control, 84(8):1398–1407, 2011. doi:10.1080/00207179.2011.601761.

[9] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak. RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati
equations. Numer. Math., 138(2):301–330, 2018. doi:10.1007/s00211-017-0907-5.

[10] P. Benner and R. Byers. An exact line search method for solving generalized continuous-time algebraic Riccati equations.
IEEE Trans. Automat. Control, 43(1):101–107, 1998. doi:10.1109/9.654908.

https://doi.org/10.1007/978-3-0348-8081-7
https://doi.org/10.1080/00207177808922455
https://doi.org/10.1137/S0895479896297719
https://doi.org/10.1007/978-3-7643-8753-2
https://doi.org/10.1137/19M1244433
https://doi.org/10.1080/00207179.2011.601761
https://doi.org/10.1007/s00211-017-0907-5
https://doi.org/10.1109/9.654908

Federico Poloni 19

[11] P. Benner and R. Byers. An arithmetic for matrix pencils: theory and new algorithms. Numer. Math., 103(4):539–573,
2006. doi:10.1007/s00211-006-0001-x.

[12] P. Benner, G. El Khoury, and M. Sadkane. On the squared Smith method for large-scale Stein equations. Numer. Linear
Algebra Appl., 21(5):645–665, 2014. doi:10.1002/nla.1918.

[13] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-
quadratic optimal control problems. Numer. Linear Algebra Appl., 15(9):755–777, 2008. doi:10.1002/nla.622.

[14] P. Benner, R.-C. Li, andN. Truhar. On theADImethod for Sylvester equations. J. Comput. Appl.Math., 233(4):1035–1045,
2009. doi:10.1016/j.cam.2009.08.108.

[15] P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserving method for computing the eigenvalues of
real Hamiltonian or symplectic pencils. Numer. Math., 78(3):329–358, 1998. doi:10.1007/s002110050315.

[16] P. Benner, E. S. Quintana-Ortí, and G. Quintana-Ortí. Numerical solution of discrete stable linear matrix equations on
multicomputers. Parallel Algorithms Appl., 17(2):127–146, 2002. doi:10.1080/10637190208941436.

[17] D. Bini and B. Meini. On the solution of a nonlinear matrix equation arising in queueing problems. SIAM J. Matrix Anal.
Appl., 17(4):906–926, 1996. doi:10.1137/S0895479895284804.

[18] D. A. Bini, L. Gemignani, and B. Meini. Computations with infinite Toeplitz matrices and polynomials. Linear Algebra
Appl., 343/344:21–61, 2002. Special issue on structured and infinite systems of linear equations. doi:10.1016/

S0024-3795(01)00341-X.

[19] D. A. Bini, B. Iannazzo, G. Latouche, and B. Meini. On the solution of algebraic Riccati equations arising in fluid queues.
Linear Algebra Appl., 413(2-3):474–494, 2006. doi:10.1016/j.laa.2005.04.019.

[20] D. A. Bini, B. Iannazzo, and B. Meini. Numerical solution of algebraic Riccati equations, volume 9 of Fundamentals of
Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.

[21] D. A. Bini, G. Latouche, and B. Meini. Numerical methods for structured Markov chains. Numerical Mathematics and
Scientific Computation. Oxford University Press, NewYork, 2005. Oxford Science Publications. doi:10.1093/acprof:
oso/9780198527688.001.0001.

[22] D. A. Bini, B. Meini, and F. Poloni. Transforming algebraic Riccati equations into unilateral quadratic matrix equations.
Numer. Math., 116(4):553–578, 2010. doi:10.1007/s00211-010-0319-2.

[23] S. Bittanti, A. Laub, and J. Willems. The Riccati equation. Communications and Control Engineering. Springer-Verlag,
Berlin, 1991.

[24] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Max-Planck-Institut für Mathematik inden
Naturwissenschaften, Leipzig, Germany, 2003. Lecture note 21.

[25] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control theory, volume 15
of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1994. doi:10.1137/1.9781611970777.

[26] A. Bunse-Gerstner and V. Mehrmann. A symplectic QR like algorithm for the solution of the real algebraic Riccati
equation. IEEE Trans. Automat. Control, 31(12):1104–1113, 1986. doi:10.1109/TAC.1986.1104186.

[27] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal.,
7:627–656, 1970. doi:10.1137/0707049.

[28] R. Byers. A Hamiltonian QR algorithm. SIAM J. Sci. Statist. Comput., 7(1):212–229, 1986. doi:10.1137/0907015.

[29] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl., 85:267–279, 1987.
doi:10.1016/0024-3795(87)90222-9.

https://doi.org/10.1007/s00211-006-0001-x
https://doi.org/10.1002/nla.1918
https://doi.org/10.1002/nla.622
https://doi.org/10.1016/j.cam.2009.08.108
https://doi.org/10.1007/s002110050315
https://doi.org/10.1080/10637190208941436
https://doi.org/10.1137/S0895479895284804
https://doi.org/10.1016/S0024-3795(01)00341-X
https://doi.org/10.1016/S0024-3795(01)00341-X
https://doi.org/10.1016/j.laa.2005.04.019
https://doi.org/10.1093/acprof:oso/9780198527688.001.0001
https://doi.org/10.1093/acprof:oso/9780198527688.001.0001
https://doi.org/10.1007/s00211-010-0319-2
https://doi.org/10.1137/1.9781611970777
https://doi.org/10.1109/TAC.1986.1104186
https://doi.org/10.1137/0707049
https://doi.org/10.1137/0907015
https://doi.org/10.1016/0024-3795(87)90222-9

20 Federico Poloni

[30] R. Byers, C. He, and V. Mehrmann. The matrix sign function method and the computation of invariant subspaces. SIAM
J. Matrix Anal. Appl., 18(3):615–632, 1997. doi:10.1137/S0895479894277454.

[31] C. Chen, R.-C. Li, and C.Ma. Highly accurate doubling algorithm for quadratic matrix equation from quasi-birth-and-death
process. Linear Algebra Appl., 583:1–45, 2019. doi:10.1016/j.laa.2019.08.018.

[32] C.-Y. Chiang, E. K.-W. Chu, C.-H. Guo, T.-M. Huang, W.-W. Lin, and S.-F. Xu. Convergence analysis of the doubling
algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl., 31(2):227–247, 2009.
doi:10.1137/080717304.

[33] D. Chu, X. Liu, and V. Mehrmann. A numerical method for computing the Hamiltonian Schur form. Numer. Math.,
105(3):375–412, 2007. doi:10.1007/s00211-006-0043-0.

[34] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin. A structure-preserving doubling algorithm for continuous-time algebraic Riccati
equations. Linear Algebra Appl., 396:55–80, 2005. doi:10.1016/j.laa.2004.10.010.

[35] E. K.-W. Chu, H.-Y. Fan, W.-W. Lin, and C.-S. Wang. Structure-preserving algorithms for periodic discrete-time algebraic
Riccati equations. Internat. J. Control, 77(8):767–788, 2004. doi:10.1080/00207170410001714988.

[36] E. K.-W. Chu, T.-M. Hwang, W.-W. Lin, and C.-T. Wu. Vibration of fast trains, palindromic eigenvalue problems and
structure-preserving doubling algorithms. J. Comput. Appl. Math., 219(1):237–252, 2008. doi:10.1016/j.cam.2007.
07.016.

[37] K.-w. E. Chu. The solution of the matrix equations AXB − CXD = E and (Y A − DZ, Y C − BZ) = (E, F). Linear
Algebra Appl., 93:93–105, 1987. doi:10.1016/S0024-3795(87)90314-4.

[38] A. da Silva Soares. Fluid queues – Building upon the analogy with QBD processes. PhD thesis, 2005.

[39] B. N. Datta. Numerical methods for linear control systems. Elsevier Academic Press, San Diego, CA, 2004. Design and
analysis.

[40] E. D. Denman and A. N. Beavers, Jr. The matrix sign function and computations in systems. Appl. Math. Comput.,
2(1):63–94, 1976. doi:10.1016/0096-3003(76)90020-5.

[41] V. Druskin, L. Knizhnerman, and V. Simoncini. Analysis of the rational Krylov subspace and ADI methods for solving
the Lyapunov equation. SIAM J. Numer. Anal., 49(5):1875–1898, 2011. doi:10.1137/100813257.

[42] V. Druskin and V. Simoncini. Adaptive rational Krylov subspaces for large-scale dynamical systems. Systems Control
Lett., 60(8):546–560, 2011. doi:10.1016/j.sysconle.2011.04.013.

[43] N. S. Ellner and E. L. Wachspress. Alternating direction implicit iteration for systems with complex spectra. SIAM J.
Numer. Anal., 28(3):859–870, 1991. doi:10.1137/0728045.

[44] J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer. Necessary and sufficient conditions for the existence of a positive
definite solution of the matrix equation X + A∗X−1A = Q. Linear Algebra Appl., 186:255–275, 1993. doi:10.1016/
0024-3795(93)90295-Y.

[45] M. A. Epton. Methods for the solution of AXD − BXC = E and its application in the numerical solution of implicit
ordinary differential equations. BIT, 20(3):341–345, 1980. doi:10.1007/BF01932775.

[46] J. D. Gardiner and A. J. Laub. A generalization of the matrix-sign-function solution for algebraic Riccati equations.
International Journal of Control, 44(3):823–832, 1986. doi:10.1080/00207178608933634.

[47] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler. Solution of the Sylvester matrix equation AXBT + CXDT = E.
ACM Trans. Math. Software, 18(2):223–231, 1992. doi:10.1145/146847.146929.

[48] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press, Baltimore, MD, fourth edition, 2013.

https://doi.org/10.1137/S0895479894277454
https://doi.org/10.1016/j.laa.2019.08.018
https://doi.org/10.1137/080717304
https://doi.org/10.1007/s00211-006-0043-0
https://doi.org/10.1016/j.laa.2004.10.010
https://doi.org/10.1080/00207170410001714988
https://doi.org/10.1016/j.cam.2007.07.016
https://doi.org/10.1016/j.cam.2007.07.016
https://doi.org/10.1016/S0024-3795(87)90314-4
https://doi.org/10.1016/0096-3003(76)90020-5
https://doi.org/10.1137/100813257
https://doi.org/10.1016/j.sysconle.2011.04.013
https://doi.org/10.1137/0728045
https://doi.org/10.1016/0024-3795(93)90295-Y
https://doi.org/10.1016/0024-3795(93)90295-Y
https://doi.org/10.1007/BF01932775
https://doi.org/10.1080/00207178608933634
https://doi.org/10.1145/146847.146929

Federico Poloni 21

[49] L. Grasedyck, W. Hackbusch, and B. N. Khoromskij. Solution of large scale algebraic matrix Riccati equations by use of
hierarchical matrices. Computing, 70(2):121–165, 2003. doi:10.1007/s00607-002-1470-0.

[50] S. Gugercin and A. C. Antoulas. A survey of model reduction by balanced truncation and some new results. Internat. J.
Control, 77(8):748–766, 2004. doi:10.1080/00207170410001713448.

[51] C.-H. Guo and P. Lancaster. Analysis and modification of Newton’s method for algebraic Riccati equations. Math. Comp.,
67(223):1089–1105, 1998. doi:10.1090/S0025-5718-98-00947-8.

[52] C.-H. Guo and W.-W. Lin. The matrix equation X + ATX−1A = Q and its application in nano research. SIAM J. Sci.
Comput., 32(5):3020–3038, 2010. doi:10.1137/090758209.

[53] C.-H. Guo andW.-W. Lin. Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm.
SIAM J. Matrix Anal. Appl., 31(5):2784–2801, 2010. doi:10.1137/090763196.

[54] S. Güttel. Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection.
GAMM-Mitt., 36(1):8–31, 2013. doi:10.1002/gamm.201310002.

[55] S. J. Hammarling. Numerical solution of the stable, nonnegative definite Lyapunov equation. IMA J. Numer. Anal.,
2(3):303–323, 1982. doi:10.1093/imanum/2.3.303.

[56] N. J. Higham. Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
Theory and computation. doi:10.1137/1.9780898717778.

[57] T.-M.Huang, R.-C. Li, andW.-W. Lin. Structure-preserving doubling algorithms for nonlinearmatrix equations, volume 14
of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018. doi:
10.1137/1.9781611975369.ch1.

[58] V. Ionescu, C. Oară, and M. Weiss. Generalized Riccati theory and robust control. John Wiley & Sons, Ltd., Chichester,
1999. A Popov function approach.

[59] R. L. Karandikar and V. Kulkarni. Second-order fluid flow models: Reflected Brownian motion in a random environment.
Oper. Res, 43:77–88, 1995.

[60] C. Kenney and A. J. Laub. On scaling Newton’s method for polar decomposition and the matrix sign function. SIAM J.
Matrix Anal. Appl., 13(3):698–706, 1992. doi:10.1137/0613044.

[61] D. Kleinman. On an iterative technique for Riccati equation computations. IEEE Transactions on Automatic Control,
13(1):114–115, February 1968. doi:10.1109/TAC.1968.1098829.

[62] D. Kressner, S. Massei, and L. Robol. Low-rank updates and a divide-and-conquer method for linear matrix equations.
SIAM J. Sci. Comput., 41(2):A848–A876, 2019. doi:10.1137/17M1161038.

[63] Y.-C. Kuo, W.-W. Lin, and S.-F. Shieh. Structure-preserving flows of symplectic matrix pairs. SIAM J. Matrix Anal.
Appl., 37(3):976–1001, 2016. doi:10.1137/15M1019155.

[64] P. Lancaster and L. Rodman. Algebraic Riccati equations. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York, 1995.

[65] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM Series on
Statistics and Applied Probability. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American
Statistical Association, Alexandria, VA, 1999. doi:10.1137/1.9780898719734.

[66] A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control, 24(6):913–921, 1979.
doi:10.1109/TAC.1979.1102178.

[67] W.-W. Lin and S.-F. Xu. Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix
equations. SIAM J. Matrix Anal. Appl., 28(1):26–39, 2006. doi:10.1137/040617650.

https://doi.org/10.1007/s00607-002-1470-0
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1090/S0025-5718-98-00947-8
https://doi.org/10.1137/090758209
https://doi.org/10.1137/090763196
https://doi.org/10.1002/gamm.201310002
https://doi.org/10.1093/imanum/2.3.303
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9781611975369.ch1
https://doi.org/10.1137/1.9781611975369.ch1
https://doi.org/10.1137/0613044
https://doi.org/10.1109/TAC.1968.1098829
https://doi.org/10.1137/17M1161038
https://doi.org/10.1137/15M1019155
https://doi.org/10.1137/1.9780898719734
https://doi.org/10.1109/TAC.1979.1102178
https://doi.org/10.1137/040617650

22 Federico Poloni

[68] Y. Lin and V. Simoncini. A new subspace iteration method for the algebraic Riccati equation. Numer. Linear Algebra
Appl., 22(1):26–47, 2015. doi:10.1002/nla.1936.

[69] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigenvalue problems: good vibrations from
good linearizations. SIAM J. Matrix Anal. Appl., 28(4):1029–1051, 2006. doi:10.1137/050628362.

[70] S. Massei, D. Palitta, and L. Robol. Solving rank-structured Sylvester and Lyapunov equations. SIAM J. Matrix Anal.
Appl., 39(4):1564–1590, 2018. doi:10.1137/17M1157155.

[71] V. Mehrmann. A symplectic orthogonal method for single input or single output discrete time optimal quadratic control
problems. SIAM J. Matrix Anal. Appl., 9(2):221–247, 1988. SIAM Conference on Linear Algebra in Signals, Systems,
and Control (Boston, Mass., 1986). doi:10.1137/0609019.

[72] V. Mehrmann. A step toward a unified treatment of continuous and discrete time control problems. In Proceedings of the
Fourth Conference of the International Linear Algebra Society (Rotterdam, 1994), volume 241/243, pages 749–779, 1996.
doi:10.1016/0024-3795(95)00257-X.

[73] V. Mehrmann and F. Poloni. Doubling algorithms with permuted Lagrangian graph bases. SIAM J. Matrix Anal. Appl.,
33(3):780–805, 2012. doi:10.1137/110850773.

[74] V. L. Mehrmann. The autonomous linear quadratic control problem, volume 163 of Lecture Notes in Control and
Information Sciences. Springer-Verlag, Berlin, 1991. Theory and numerical solution. doi:10.1007/BFb0039443.

[75] B. Meini. Efficient computation of the extreme solutions of X + A∗X−1A = Q and X − A∗X−1A = Q. Math. Comp.,
71(239):1189–1204, 2002. doi:10.1090/S0025-5718-01-01368-0.

[76] G. T. Nguyen and F. Poloni. Componentwise accurate fluid queue computations using doubling algorithms. Numer. Math.,
130(4):763–792, 2015. doi:10.1007/s00211-014-0675-4.

[77] D. Palitta and V. Simoncini. Numerical methods for large-scale Lyapunov equations with symmetric banded data. SIAM
J. Sci. Comput., 40(5):A3581–A3608, 2018. doi:10.1137/17M1156575.

[78] T. Pappas, A. J. Laub, and N. R. Sandell, Jr. On the numerical solution of the discrete-time algebraic Riccati equation.
IEEE Trans. Automat. Control, 25(4):631–641, 1980. doi:10.1109/TAC.1980.1102434.

[79] D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of parabolic and elliptic differential equations. J. Soc.
Indust. Appl. Math., 3:28–41, 1955.

[80] T. Penzl. A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput., 21(4):1401–1418,
1999/00. doi:10.1137/S1064827598347666.

[81] F. Poloni and T. Reis. A structure-preserving doubling algorithm for Lur’e equations. Numer. Linear Algebra Appl.,
23(1):169–186, 2016. doi:10.1002/nla.2019.

[82] A. C. M. Ran and H. L. Trentelman. Linear quadratic problems with indefinite cost for discrete time systems. SIAM J.
Matrix Anal. Appl., 14(3):776–797, 1993. doi:10.1137/0614055.

[83] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat.
J. Control, 32(4):677–687, 1980. doi:10.1080/00207178008922881.

[84] L. C. G. Rogers. Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains. Ann. Appl. Probab.,
4:390–413, 1994.

[85] A. Ruhe. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl., 58:391–405, 1984.
doi:10.1016/0024-3795(84)90221-0.

[86] M. Sadkane. A low-rank Krylov squared Smith method for large-scale discrete-time Lyapunov equations. Linear
Algebra and its Applications, 436(8):2807 – 2827, 2012. Special Issue dedicated to Danny Sorensen’s 65th birth-
day. URL: http://www.sciencedirect.com/science/article/pii/S0024379511005337, doi:https://doi.org/10.1016/
j.laa.2011.07.021.

https://doi.org/10.1002/nla.1936
https://doi.org/10.1137/050628362
https://doi.org/10.1137/17M1157155
https://doi.org/10.1137/0609019
https://doi.org/10.1016/0024-3795(95)00257-X
https://doi.org/10.1137/110850773
https://doi.org/10.1007/BFb0039443
https://doi.org/10.1090/S0025-5718-01-01368-0
https://doi.org/10.1007/s00211-014-0675-4
https://doi.org/10.1137/17M1156575
https://doi.org/10.1109/TAC.1980.1102434
https://doi.org/10.1137/S1064827598347666
https://doi.org/10.1002/nla.2019
https://doi.org/10.1137/0614055
https://doi.org/10.1080/00207178008922881
https://doi.org/10.1016/0024-3795(84)90221-0
http://www.sciencedirect.com/science/article/pii/S0024379511005337
https://doi.org/https://doi.org/10.1016/j.laa.2011.07.021
https://doi.org/https://doi.org/10.1016/j.laa.2011.07.021

Federico Poloni 23

[87] A. H. Sayed and T. Kailath. A survey of spectral factorization methods. Numer. Linear Algebra Appl., 8(6-7):467–496,
2001. Numerical linear algebra techniques for control and signal processing. doi:10.1002/nla.250.

[88] V. Simoncini. Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations.
SIAM J. Matrix Anal. Appl., 37(4):1655–1674, 2016. doi:10.1137/16M1059382.

[89] V. Simoncini. Computational methods for linear matrix equations. SIAM Rev., 58(3):377–441, 2016. doi:10.1137/

130912839.

[90] R. A. Smith. Matrix equation XA + BX = C . SIAM J. Appl. Math., 16:198–201, 1968. doi:10.1137/0116017.

[91] P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Statist. Comput., 2(2):121–
135, 1981. doi:10.1137/0902010.

[92] E. L. Wachspress. Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett., 1(1):87–90, 1988. doi:10.

1016/0893-9659(88)90183-8.

[93] D. S. Watkins. The matrix eigenvalue problem. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2007. GR and Krylov subspace methods. doi:10.1137/1.9780898717808.

[94] J. Willems. Least squares stationary optimal control and the algebraic riccati equation. IEEE Transactions on Automatic
Control, 16(6):621–634, 1971.

[95] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hierarchically semiseparable matrices. Numer. Linear
Algebra Appl., 17(6):953–976, 2010. doi:10.1002/nla.691.

[96] J. Xue and R.-C. Li. Highly accurate doubling algorithms for M-matrix algebraic Riccati equations. Numer. Math.,
135(3):733–767, 2017. doi:10.1007/s00211-016-0815-0.

[97] J. Xue, S. Xu, and R.-C. Li. Accurate solutions ofM-matrix algebraic Riccati equations. Numer. Math., 120(4):671–700,
2012. doi:10.1007/s00211-011-0421-0.

[98] J. Xue, S. Xu, and R.-C. Li. Accurate solutions ofM-matrix Sylvester equations. Numer. Math., 120(4):639–670, 2012.
doi:10.1007/s00211-011-0420-1.

How to cite this article: Poloni F. (TODO), TODO: shouldn’t these fields be filled in automatically?, TODO, TODO.

https://doi.org/10.1002/nla.250
https://doi.org/10.1137/16M1059382
https://doi.org/10.1137/130912839
https://doi.org/10.1137/130912839
https://doi.org/10.1137/0116017
https://doi.org/10.1137/0902010
https://doi.org/10.1016/0893-9659(88)90183-8
https://doi.org/10.1016/0893-9659(88)90183-8
https://doi.org/10.1137/1.9780898717808
https://doi.org/10.1002/nla.691
https://doi.org/10.1007/s00211-016-0815-0
https://doi.org/10.1007/s00211-011-0421-0
https://doi.org/10.1007/s00211-011-0420-1

	Iterative and doubling algorithms for Riccati-type matrix equations: a comparative introduction
	Abstract
	Introduction
	Stein equations
	Solution properties
	Algorithms

	Lyapunov equations
	Solution properties
	Algorithms
	Remarks

	Discrete-time Riccati equations
	Solution properties
	Algorithms

	Continuous-time Riccati equations
	Solution properties
	Algorithms
	Remarks

	Unilateral equations and NMEs
	Solution properties
	Algorithms
	Remarks

	Nonsymmetric variants in applied probability
	Conclusions
	References

