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Abstract. We present an approach to the determination of the stabilizing solution of Lur’e
matrix equations. We show that the knowledge of a certain deflating subspace of an even matrix
pencil may lead to Lur’e equations which are defined on some subspace, the so-called “projected
Lur’e equations.” These projected Lur’e equations are shown to be equivalent to projected Riccati
equations, if the deflating subspace contains the subspace corresponding to infinite eigenvalues. This
result leads to a novel numerical algorithm that basically consists of two steps. First we determine
the deflating subspace corresponding to infinite eigenvalues using an algorithm based on the so-called
“neutral Wong sequences,” which requires a moderate number of kernel computations; then we solve
the resulting projected Riccati equations. Altogether this method can deliver solutions in low-rank
factored form, it is applicable for large-scale Lur’e equations and exploits possible sparsity of the
matrix coefficients.

Key words. Lur’e equations, Riccati equations, deflating subspaces, even matrix pencils,
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1. Introduction. For given matrices A ∈ Cn,n, B,S ∈ Cn,m, and Hermitian
Q ∈ Cn,n R, J ∈ Cm,m, where J is a signature matrix (i.e., J = diag(±1, . . . ,±1)),
we consider Lur’e equations

(1.1)

A∗X +XA+Q = K∗JK,

XB + S = K∗JL,
R = L∗JL,

which have to be solved for the triple (X,K,L) ∈ Cn,n×Cm,n×Cm,m with Hermitian
X and p = rank[K , L] as small as possible. For sake of simplicity, we will call X
a solution of the Lur’e equations, if there exist K and L such that (1.1) holds true.

These types of equations arise in J-spectral factorization. That is, for a given
m × m-valued rational rational function Φ(s) ∈ C(s)m,m which is para-Hermitian
(that is, Φ is Hermitian on the imaginary axis), one seeks for rational function Ψ(s) ∈
C(s)m,m with

(1.2) Ψ(s)∗JΨ(s) = Φ(s).

More precisely, for
(1.3)
Φ(s) = R+B∗(−sI −A∗)−1Q(sI −A)−1B +B∗(−sI −A∗)−1S + S∗(sI −A)−1B,

a simple calculation yields that solutions of the Lur’e equations give rise to a factor-
ization (1.2) with
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1340 FEDERICO POLONI AND TIMO REIS

(1.4) Ψ(s) = L+K(sI −A)−1B.

The rational function Ψ(s) is called a J-spectral factor; Φ(s) is often referred to as the
spectral density function, or Popov function.

The problem of J-spectral factorization plays a key role in H∞-controller design
[23] and also occurs in the frequency domain consideration of differential games [5].
An important special case is J being the identity: Here, the spectral factorization
problem is a crucial tool for linear-quadratic optimal control. Namely, the spectral
factorization problem can be seen as the frequency domain counterpart of the mini-
mization (resp., “infimization”) of the cost functional

(1.5) J (u(·), x0) =
1

2

∫ ∞

0

[
x(t)
u(t)

]∗ [
Q S
S∗ R

] [
x(t)
u(t)

]
dt

subject to the constraint defined by the ordinary differential equation ẋ(t) = Ax(t) +
Bu(t) with initial and end conditions x(0) = x0, limt→∞ x(t) = 0 [50]. Indeed, it can
be shown that the optimal control and the optimal value of the cost functional can
be determined by means of a certain solution of the Lur’e equations.

In the case where the input is “fully weighted,” i.e., the matrix R is invertible,
then the unknown matrices K and L can be eliminated and one obtains an algebraic
Riccati equation (ARE)

(1.6) A∗X +XA− (XB + S)R−1(XB + S)∗ +Q = 0.

While, e.g., in linear-quadratic optimal control, the invertibility of R is often a reason-
able assumption, there exist various other important applications for Lur’e equations
with possibly singular R: In H∞ control, invertibility of R corresponds to full-rank
properties of certain feedthrough terms of the plant [21, 19, 20]. This cannot always be
justified by practice. Furthermore, singular problems also occur in balancing-related
model order reduction: The methods of positive real balanced truncation and bounded
real balanced truncation [13, 24, 34, 36, 39] require the numerical solution of large-scale
Lur’e equations. Here the singularity of R is often a structural property of the system
to be analyzed [38] and can therefore not be excluded by arguments of genericity.

Though the numerical solution of (especially large-scale) algebraic Riccati equa-
tions is still the subject of present research, this field can be considered as widely
well understood [6, 12]. For the case of definite R, the Newton–Kleinman method
[31] is a popular choice mainly because of the following reasons: a starting value for
the iteration can be easily determined by solving a simple stabilization problem; the
method is usually quadratically convergent; and, last but not least, it can be refor-
mulated such that the iterates Xi appear in low rank factored form X(i) = Z(i)(Z(i))∗

for some Z(i) ∈ Cn,ki with ki � n [7]. The latter property enables a significantly less
memory-consuming implementation, and, furthermore, factorizations of the solutions
are required anyway in many applications, such as balancing-related model order re-
duction [8, 24]. If R is invertible but indefinite, the numerical solution of the Riccati
equation (1.6) becomes more involved. In [14], the Newton–Kleinman iteration is con-
sidered. However, the starting value has to fulfill an additional inequality constraint
and is, in general, difficult to compute. A completely different kind of iteration has
been proposed in [33], where a recursion is presented that requires the solution of
a Riccati equation with definite quadratic term. Quadratic convergence is proven.

While the numerical analysis for algebraic Riccati equations has achieved a con-
siderably advanced level [6, 12, 41], the case of singular R has been treated stepmoth-
erly. The existing results are either purely analytical [16, 17, 40], or describe numerical

D
ow

nl
oa

de
d 

10
/2

1/
13

 to
 1

92
.1

67
.2

04
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFLATION OF LARGE-SCALE LUR’E EQUATIONS 1341

methods that are feasible only for small dense problems. Before our approach is pre-
sented, let us briefly review some known theoretical and numerical approaches to the
spectral factorization and optimal control problem:

(a) The paper [27] considers a completely different type of equation to approach
the linear-quadratic optimal control problem. It is seeked for a quintuple
(r,X, V, F, S) ∈ N × Cn,n × Cn,r × Cm,n, such that V ∗XV is Hermitian, V
has full column rank, the spectrum of S is located in the complex left half
plane, and [

A∗X +XA+Q XB + S
S∗ +B∗X R

] [
I
F

]
V = 0,

(A+BF )V = V S.

It is shown that the space imV determines the set of initial states x0 ∈ Rn

for which the optimal control problem (1.5) has a solution. It is only possible
in special cases to relate these solutions to the spectral factorization problem.

(b) In [26, 48, 28], the Lur’e equations (1.1) with J = Im are transformed to
a constrained Riccati equation

(1.7)
A∗X +XA− (XB + S)R+(XB + S)∗ +Q = 0,

kerR ⊂ ker(XB + S).

Solvability criteria are presented in terms of spectral properties of so-called
extended Hamiltonian matrix pencils. In certain special cases, solutions of the
constrained Riccati equation give rise to solutions of the spectral factorization
problem. Later on we will present some further comments on the relation to
the equations considered in this work.

(c) The most common approach to the numerical solution of Lur’e equations with
J = Im in engineering practice is regularization, i.e., the slight perturbation
of R by εIm such that R + εI is invertible. The corresponding perturbed
Lur’e equations are now equivalent to the Riccati equation

(1.8) A∗Xε +XεA− (XB + S)(R+ εI)−1(XεB + S)∗ +Q = 0.

It is shown in [30, 44] that convergence of desired solutions Xε then converge
as ε tends to zero.

(d) The works [29, 47] present an successive technique for the elimination of vari-
ables corresponding to kerR. By performing an orthogonal transformation of
R, and an accordant transformation of L, the equations can be divided into
a “regular part” and a “singular part.” The latter leads to an explicit equation
for a part of the matrix K. Plugging this part into (1.1), one obtains Lur’e
equations of slightly smaller size. After a finite number of steps this leads
to an algebraic Riccati equation. This also gives an equivalent solvability
criterion that is obtained by the feasibility of this iteration. The regulariza-
tion approach has two essential disadvantages: so far, no estimates for the
perturbation error ‖X − Xε‖ have been found, and even convergence rates
are unknown. Furthermore, the numerical sensitivity of the Riccati equation
(1.8) increases drastically as ε tends to 0.

(e) Recently, the structure-preserving doubling algorithm (SDA) [15] was ex-
tended to a certain class of Lur’e equations [37]. Roughly speaking, the
problem is transformed via Cayley transformation to the discrete-time case,
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1342 FEDERICO POLONI AND TIMO REIS

and a power iteration leads to the desired solution. It is shown that this iter-
ation converges linearly. Again, this method is only applicable to small-scale
dense problems, and an additional restriction is that the associated pencil
must be regular.

The approach presented in this work is related to 1) in the sense that the “singular
part” of the Lur’e equation is extracted and, afterwards, an “inherent algebraic Riccati
equation” is set up and solved. We make use of the results in [40, 3, 4], where it is
shown that there exists a one-to-one correspondence between the solutions of Lur’e
equations and certain deflating subspaces of the matrix pencil

(1.9) sE − A =

⎡⎣ 0 −sI +A B
sI +A∗ Q S

B∗ S∗ R

⎤⎦ .

Based on these results, we show that the determination of deflating subspaces of the
pencil (1.9) leads to the knowledge of the action of X on some subspace, that is,

(1.10) XV̆x = V̆μ

for some matrices V̆μ, V̆x ∈ Cn,n̆, which are constructed from a basis matrix of the de-
flating subspace of sE − A. Furthermore, we show that using the partial information
in (1.10) we can reduce (1.1) to a system of projected Lur’e equations

(1.11)

Ã∗X̃ + X̃Ã+ Q̃ = K̃∗JK̃, X̃ = X̃∗ = Π∗X̃Π ∈ C
n,n,

X̃B̃ + S̃ = K̃∗JL̃,

R̃ = L̃∗JL̃,

where Π ∈ Cn,n is a projector matrix (i.e., Π2 = Π), the coefficients satisfy

(1.12)
Ã = ΠÃΠ ∈ C

n,n, B̃ = ΠB̃ ∈ C
n,m̃, S̃ = Π∗S̃ ∈ C

n,m̃,

Q̃ = Q̃∗ = Π∗Q̃Π ∈ C
n,n, R̃ = R̃∗ ∈ C

m̃,m̃.

We prove that these projected Lur’e equations are implicitly equivalent to a Riccati
equation as long as our deflating subspace contains a certain part of the deflating
subspace corresponding to the infinite eigenvalues. This implicit algebraic Riccati
equation can be solved by slight reformulations of the known approaches for conven-
tional algebraic Riccati equations.

In [46] the deflating subspace approach has been considered for a special Ric-
cati equations (R positive definite, Q positive semidefinite, S = 0): The full (m +
n-dimensional) deflating subspace determining the desired solution has been com-
puted by transforming the associated pencil to staircase form of the pencil. This
form can be achieved by multiplication of the pencil sE − A from the left and from
the right with unitary matrices. Note that, by using the extension of the staircase
form to general (possibly singular) matrix pencils, the deflation approach via staircase
form could, in principle, be generalized to general Lur’e equations. However, since
the unitary matrices involved in the staircase algorithm are dense, this approach is
not well suited to large-scale problems in which preserving the sparsity structure of
A is crucial. By the approach presented here of deflating only a “small and critical
part” we will be able to enable the numerical advantages of iterative methods also in
the case of general Lur’e equations.

This paper is organized as follows. In the forthcoming section, we arrange the ba-
sic notation and present the fundamental facts about matrix pencils and their normal
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DEFLATION OF LARGE-SCALE LUR’E EQUATIONS 1343

forms. In particular, we present fundamentals of deflating subspaces, give a construc-
tive approach via so-called Wong sequences, and develop some extensions which are
useful in later parts. Thereafter, in section 3, we briefly repeat some results about
solution theory for Lur’e equations. In particular, the connection between solutions
and deflating subspaces of the even matrix pencil sE − A as in (1.9) is highlighted.
As well, we slightly extend this theory to projected Lur’e equations. In section 4
we develop the main theoretical preliminaries for the numerical method introduced
in this work: Based on the concept of partial solution we present some results on
the structure of the corresponding projected Lur’e equations. In particular, we give
equivalent criteria on the deflated subspace for the possibility to reformulate the pro-
jected Lur’e equations (1.11) as projected Riccati equations. This theory enables us
to formulate in section 5 a numerical algorithm for solution of Lur’e equations which
first consists of determining a “critical deflating subspace of sE − A,” and then an
iterative solution of the obtained projected algebraic Riccati equation. This paper
ends with section 6, where the presented numerical approach is tested by means of
several numerical examples.

2. Matrix theoretic preliminaries.

2.1. Nomenclature. We adopt the following notation.

N, N0 set of natural numbers, N0 = N ∪ {0}
�x� = max {n ∈ N | n ≤ x} ∪ {0}, integer part of x ∈ R

C+, C−, iR set of complex numbers with negative (positive, zero) real
part, respectively

z, A∗, AT conjugate of z ∈ C, Hermitian and transpose of A ∈ Cm,n,
respectively

Gln(C) the group of invertible real n× n matrices

C[s] the ring of polynomials with coefficients in C

C(s) the quotient field of C[s]

Rn,m the set of n×m matrices with entries in a ring R

‖M‖F Frobenius norm of M ∈ Cn,m

M+ Moore–Penrose inverse of M ∈ C
n,m [25, Chapter 5.7]

M ≥
(>,≤,<)

N M − N is Hermitian and positive semidefinite (positive
definite, negative semidefinite, negative definite).

M−1Y = {x ∈ Cm | Mx ∈ Y }, the preimage of the set Y ⊆ Cn

under M ∈ Cn,m

YM⊥ {x ∈ Rn | x∗My = 0 ∀y ∈ Y }, the M -orthogonal comple-
ment of the subspace Y ⊆ Rn (where M ∈ Rn,m)

diag(A1, . . . , Ak) block-diagonal matrix with entries Ai ∈ Cmi,ni for
mi, ni ∈ N0, i = 1, . . . , k (A ∈ Cm,n for n = n1 + · · ·+nk,
m = m1 + · · ·+mk)

n+(M), n−(M),
n0(M)

the number of positive, negative, and zero eigenvalues of
the Hermitian matrix M ∈ Cn,n

Moreover, an identity matrix of size n× n is denoted by In or simply by I, the zero

n ×m matrix is by 0n,m or simply by 0. The symbol e
(n)
i (or simply ei) stands for
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1344 FEDERICO POLONI AND TIMO REIS

the ith column of In. A matrix V is called a basis matrix for a subspace V if it has
full column rank and im V = V . A matrix J ∈ Rm,m is called a signature matrix if it
is diagonal with J2 = Im (i.e., J = diag(±1, . . . ,±1)).

We further introduce the special matrices Jk,Mk, Nk ∈ Rk,k, Kk, Lk ∈ Rk−1,k for
k ∈ N, which are given by

(2.1)

Jk =

⎡⎢⎣ 1

. .
.

1

⎤⎥⎦ , Kk =

⎡⎢⎣0 1
. . .

. . .

0 1

⎤⎥⎦ , Lk =

⎡⎢⎣1 0
. . .

. . .

1 0

⎤⎥⎦ ,

Mk =

⎡⎢⎢⎢⎢⎣
1 0

. .
.

. .
.

1 . .
.

0

⎤⎥⎥⎥⎥⎦ , Nk =

⎡⎢⎢⎢⎢⎣
0 1

. . .
. . .

. . . 1
0

⎤⎥⎥⎥⎥⎦ .

2.2. Matrix pencils. Here we introduce some fundamentals of matrix pencils,
i.e., first order matrix polynomials sE − A ∈ C[s]M,N with E ,A ∈ CM,N .

Definition 2.1. A matrix pencil P (s) = sE − A ∈ C[s]M,N is called
(i) regular if M = N and rankC(s) P (s) = N , and
(ii) even if P (s)∗ = P (s), i.e., E = −ET and A = AT .
Many properties of a matrix pencil can be characterized in terms of the Kronecker

canonical form (KCF).
Theorem 2.2 (see [22]). For a matrix pencil sE − A ∈ C[s]M,N , there exist

matrices Ul ∈ GlM (C), Ur ∈ GlN (C), such that

(2.2) Ul(sE − A)Ur = diag(C1(s), . . . , Ck(s)),
where each of the pencils Cj(s) is of one of the types presented in Table 2.1. The
numbers λ appearing in the blocks of type K1 are called the (generalized) eigenvalues
of sE −A. Blocks of type K2 are said to be corresponding to infinite eigenvalues.

A special modification of the KCF for even matrix pencils, the so-called even
Kronecker canonical form (EKCF) is presented in [42]. Note that there is also an
extension of this form such that realness is preserved [43].

Theorem 2.3 (see [42]). For an even matrix pencil sE − A ∈ C[s]N,N , there
exists some U ∈ GlN (C) such that

(2.3) U∗(sE − A)U = diag(D1(s), . . . ,Dk(s)),

where each of the pencils Dj(s) is of one of the types presented in Table 2.2. The
numbers εj in the blocks of type E2 and E3 are called the block signatures.

The KCF can be easily obtained from an EKCF by permuting rows and columns:
The blocks of type E1 contains pairs (λ,−λ) of generalized eigenvalues. In the case

Table 2.1

Block types in Kronecker canonical form (with matrices as defined in (2.1)).

Type Size Cj(s) Parameters

K1 kj × kj (s− λ)Ikj
−Nkj

kj ∈ N, λ ∈ C

K2 kj × kj sNkj
− Ikj

kj ∈ N

K3 (kj − 1)× kj sKkj
− Lkj

kj ∈ N

K4 kj × (kj − 1) sKT
kj

− LT
kj

kj ∈ N
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Table 2.2

Block types in even Kronecker canonical form (with matrices as defined in (2.1)).

Type Size Dj(s) Parameters

E1 2kj × 2kj

[
0kj ,kj

(λ−s)Ikj
−Nkj

(λ+s)Ikj
−NT

kj
0kj ,kj

]
kj ∈ N, λ ∈ C+

E2 kj × kj εj((−is − ω)Jkj
+Mkj

)
kj ∈ N, ω ∈ R,
εj ∈ {−1, 1}

E3 kj × kj εj(isMkj
+ Jkj

)
kj ∈ N,
εj ∈ {−1, 1}

E4
(2kj−1)×
(2kj−1)

[
0kj ,kj

isKT
kj

+ LT
kj

isKkj
+ Lkj

0kj−1,kj−1

]
kj ∈ N

where E ,A ∈ Rn,n, nonimaginary eigenvalues even occur in quadruples (λ, λ,−λ,−λ).
The blocks of types E2 and E3, respectively, correspond to the purely imaginary and
infinite eigenvalues. Blocks of type E4 consist of a combination of blocks that are
equivalent to those of types K3 and K4. Note that regularity of the pencil sE − A is
equivalent to the absence of blocks of type E4.

The following concept generalizes the notion of invariant subspaces to matrix
pencils.

Definition 2.4. A subspace V ⊂ CN is called a (right) deflating subspace for the
pencil sE−A ∈ C[s]M,N if, for a basis matrix V ∈ CN,k of V, there exists some l ∈ N0,

a matrix W ∈ CM,l, and a pencil sẼ−Ã ∈ C[s]l,k with rankC(s)(sẼ−Ã) = l, such that

(2.4) (sE − A)V = W (sẼ − Ã).

In what follows we introduce special properties of matrix pencils [sI − A , B] ∈
C[s]n,n+m. In systems theory these properties correspond to trajectory design and
stabilization of systems ẋ(t) = Ax(t) + Bu(t) and are also known under the name
Hautus criteria.

Definition 2.5. Let a pair (A,B) ∈ Cn,n × Cn,m be given. Then we have the
following:

(i) λ ∈ C is called an uncontrollable mode of (A,B) if it is a generalized eigen-
value of [ sI−A , B ];

(ii) (A,B) is called controllable if it does not have any uncontrollable modes;
(iii) (A,B) is called stabilizable if all uncontrollable modes have negative real part.
Finally, we present some notations about (possibly indefinite) inner products

induced by a Hermitian matrix.
Definition 2.6. Let an Hermitian matrix M ∈ CN,N be given.
(i) Two subspaces V1,V2 ⊂ CN are called M-orthogonal if V2 ⊂ VM⊥

1 .
(ii) A subspace V ⊂ CN is called M-neutral if V is M-orthogonal to itself.

2.3. Deflating subspaces and (neutral) Wong sequences. It is immediate
that in the KCF (2.2) and EKCF (2.3), the space spanned by the columns of Ur (resp.,
U) that correspond to a single block defines a deflating subspace. Roughly speaking,
we now give a characterization of these spaces without making use of the full KCF or
EKCF. This is obtained by using the so-called Wong sequences [51, 10, 11].

The Wong sequence (W(�)
λ ) of a pencil sE − A ∈ C[s]M,N associated to a given

λ ∈ C is the sequence of subspaces defined recursively by

W(0)
λ = {0}, W(�)

λ = (λE − A)−1(EW(�−1)
λ ), � ∈ N,(2.5a)
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1346 FEDERICO POLONI AND TIMO REIS

while the Wong sequence for λ = ∞ is defined via

W(0)
∞ = {0}, W(�)

∞ = E−1(AW(�−1)
∞ ), � ∈ N.(2.5b)

It is shown in [51, 10, 11] that (W(�)
λ ) is an increasing sequence of nested subspaces

(i.e., W(�−1)
λ ⊆ W(�)

λ ), and, by reasons of finite-dimensionality, we have stagnation of
this sequence. We define

(2.6) Wλ :=

∞⋃
�=0

W(�)
λ .

In the following, we show that Wλ is exactly the sum of the deflating subspaces
associated to blocks corresponding to the generalized eigenvalue λ ∈ C∪{∞} together
with the space corresponding to blocks of type K3.

First we present an auxiliary result stating that Wong sequences of a block-
diagonal pencil are formed by direct sums of separate Wong sequences. It is further-
more shown how the pre- and postmultiplication of a pencil by invertible matrices
influences Wong sequences.

Lemma 2.7. Let λ ∈ C ∪ {∞} and a pencil sE − A ∈ C[s]M,N be given.

(i) If (W(�)
λ ) is a Wong sequence for sE − A, and Ul ∈ GlM (C), Ur ∈ GlN (C),

then the corresponding Wong sequence for Ul(sE−A)Ur is given by (U−1
r W(�)

λ ).

(ii) Let (W(�)
λ ), (W̃(�)

λ ) be Wong sequences for sE − A and sẼ − Ã, respectively.

Then the corresponding Wong sequence for the pencil s diag(E , Ẽ)−diag(A, Ã)

is given by (W(�)
λ × W̃(�)

λ ).
This enables us to consider the Wong sequences of the blocks in the KCF sepa-

rately. It is easy to work out directly what happens on a single block of a Kronecker

canonical form. For instance, for λ = ∞, direct computation shows that W(�)
∞ = {0}

for all � on a K1 or K4 block, while for either a block of type K2 with size kj × kj or
a block of type K3 with size (kj − 1)× kj we obtain that

W(�)
∞ =

{
span{e1, . . . , e�}, � < kj ,

C
kj , � ≥ kj .

As a consequence of these computations and Lemma 2.7, we can formulate the sub-
sequent result that connects the subspace Wλ (which obviously does not depend on
the particular choice of the matrices Ur and Ul as in (2.2)) to the space spanned by
certain columns of Ur.

Corollary 2.8. Let λ ∈ C ∪ {∞} and a pencil sE − A ∈ C[s]M,N be given. Let
Ul ∈ GlM (C), Ur ∈ GlN (C) such that Ul(sE −A)Ur is in KCF (2.2). Further, let Ur

be partitioned conformably with the KCF as

Ur =
[
U1 U2 · · · Uk

]
.

Then, for Wλ as in (2.6), there holds

Wλ =
∑

j∈Tλ∪S

imUj ,

where

S = {j ∈ N | Cj is of type K3} ,

Tλ =

{
{j ∈ N | Dj is of type K1 with eigenvalue λ } if λ ∈ C,

{j ∈ N | Dj is of type K3} if λ = ∞.
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DEFLATION OF LARGE-SCALE LUR’E EQUATIONS 1347

A further consequence is that, for any λ, μ ∈ C ∪ {∞} with λ �= μ, there holds
Wλ ∩Wμ =

∑
j∈S imUj . Hence, the deflating subspace corresponding to all blocks of

type K3 is well defined as well. We now present an auxiliary result on Wong sequences
of upper triangular matrix pencils, which will be an essential ingredient for one of the
main results of this article.

Lemma 2.9. Let the matrix pencils sEij − Aij ∈ C[s]Mi,Nj be given for (i, j) ∈
{(1, 1), (1, 2), (2, 2)}. For λ ∈ C ∪ {∞}, denote Wλ,11 and Wλ to be the spaces at
which the Wong sequences of the pencils sE11 −A11 and, respectively,

sE − A =

[
sE11 −A11 sE12 −A12

0 sE22 −A22

]
stagnate. Assume that the KCF of sE11 −A11 does not contain any blocks of type K4
and, moreover, dimWλ,11 = dimWλ. Then Wλ = Wλ,11 × {0} and kerλE22 −A22 =
{0}.

Proof. We show only the result for λ ∈ C. The case of infinite eigenvalue can be
proven by reversing the roles of E and A, and then setting λ = 0.

By the upper triangularity of sE −A and the construction of the Wong sequences,
we immediately obtain that Wλ,11 × {0} is a subset of Wλ. Since the dimensions of
these spaces are equal, we obtain Wλ,11 × {0} = Wλ.

Using that the KCF of sE11 − A11 does not contain any blocks of type K4, we
may employ the KCF to obtain the identity

(2.7) E11Wλ,11 + im(λE11 −A11) = C
N1 .

Now assume that y ∈ ker(λE22 − A22). Then, by (2.7), there exists some x ∈ CN1

with

(λE11 −A11)x+ (λE12 −A12)y ∈ E11Wλ,11.

Hence, [
λE11 −A11 λE12 −A12

0 λE22 −A22

] [
x
y

]
∈ E11Wλ,11 × {0},

i.e.,[
x
y

]
∈
[
λE11 −A11 λE12 −A12

0 λE22 −A22

]−1 [E11 E12
0 E22

]
· (Wλ,11 × {0}) = Wλ,11 × {0}.

However, this implies y = 0. Altogether, we have ker(λE22 −A22) = {0}, whence λ is
no generalized eigenvalue of sE22 −A22.

In what follows we extend the theory of Wong sequences to obtain E-neutral
deflating subspaces of even matrix pencils, which are essential for our theoretical and
algorithmic framework for Lur’e equations. By a closer look at the EKCF (2.3), it can
be realized that for λ ∈ C\iR, the space Wλ is E-neutral. However, this does not hold
for imaginary or infinite generalized eigenvalues. The following modification of Wong
sequences provides a suitable “E-neutral part” of these subspaces. We define the

neutral Wong sequence (V(�)
iω ) associated with the imaginary eigenvalue λ ∈ iR) via

Z(0)
λ = V(0)

λ = {0},(2.8a)
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1348 FEDERICO POLONI AND TIMO REIS

Z(�)
λ = (λE − A)−1

(
EV(�−1)

λ

)
,(2.8b)

V(�)
λ = V(�−1)

λ +

(
Z(�)

λ ∩
(
Z(�)

λ

)E⊥)
, � ∈ N,(2.8c)

and the corresponding sequence for the infinite eigenvalue as

Z(0)
∞ = V(0)

∞ = {0},(2.8d)

Z(�) = E−1
(
AV(�−1)

∞
)
,(2.8e)

V(�)
∞ = V(�−1)

∞ +

(
Z(�)

∞ ∩
(
Z(�)

∞
)E⊥)

, � ∈ N.(2.8f)

It is obvious from its definition that (V(�)
λ ) is an increasing and eventually stagnating

sequence of nested subspaces, and we may define the subspace

(2.9) Vλ :=

∞⋃
�=0

V(�)
λ .

Furthermore, if for the “conventional Wong sequence” (W
(�)
λ ) there holds that W

(�)
λ

is E-neutral for � = 0, 1, 2, . . . , h, then V(�)
λ = W(�)

λ for � = 1, 2, . . . , h.

The following statement (which is analogous to Lemma 2.7) applies to (V(�)
iω ) and

shows that we may consider separately the blocks in the EKCF when analyzing the
neutral Wong sequences.

Lemma 2.10. Let λ ∈ iR ∪ {∞} and an even matrix pencil sE − A ∈ C[s]N,N be
given.

(i) If (V(�)
λ ) is a neutral Wong sequence for sE − A and U ∈ GlN (C), then the

corresponding neutral Wong sequence for U∗(sE −A)U is given by (U−1V(�)
λ ).

(ii) If (V�
λ), (Ṽ�

λ) are neutral Wong sequences for sE −A and sẼ −Ã, respectively,

then the corresponding neutral Wong sequence for s diag(E , Ẽ) − diag(A, Ã)

is given by (V(�)
λ × Ṽ(�)

λ ).
Again, we can explicitly characterize the space at which neutral Wong sequences

stagnate.

Theorem 2.11. Let V(�)
λ be the neutral Wong sequence associated to λ ∈ iR∪{∞}

for the even pencil sE − A ∈ C[s]N,N . Let U be a nonsingular matrix reducing it to
EKCF as in (2.3), partitioned conformably as

U =
[
U1 U2 · · · Uk

]
.

Then, for Vλ as in (2.9), there holds

Vλ =
∑
j∈Tλ

im

(
Uj

[
Ihj

0kj−hj,hj

])
+
∑
j∈S

im

(
Uj

[
Ikj

0kj−1,kj

])
,

where

S = {j ∈ N | Dj is of type E4 } ,

Tλ =

{
{j ∈ N | Dj is of type E2 with eigenvalue λ} if λ ∈ iR,

{j ∈ N | Dj is of type E3 } if λ = ∞,

hj =

{
�kj

2 � if λ ∈ iR,

�kj+1
2 � if λ = ∞.
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DEFLATION OF LARGE-SCALE LUR’E EQUATIONS 1349

In particular, the subspaces Vλ are all E-neutral and do not depend on the choice
of U .

Proof. Lemma 2.10 allows us to restrict to the case where sE −A is a single block
of one of the four types in Table 2.2.

E1 Since λ ∈ iR∪{∞}, both matrices E , λE −A are nonsingular, whence V(�)
λ = {0}.

E2 V(�)
λ = {0} unless λ coincides with the generalized eigenvalue associated to given

block. It therefore suffices to consider only the latter case. Explicit com-

putation shows that V(�)
λ = span{e1, e2, . . . , e�} for � ≤ hj . After that,

Z(hj+1)
λ is not E-neutral anymore. The computations in the case of even

and odd kj slightly differ, but in both we obtain (Z(hj+1)
λ )E⊥ ⊆ V(hj)

λ , thus

V(hj+1)
λ = V(hj)

λ , and the sequence stagnates.

E3 Here we have V(�)
λ = {0} unless λ = ∞, so we consider only this case: However,

a similar argumentation to that described for the case of a block of type E2
can be applied here to obtain the desired result.

E4 A block of type E4 is antidiagonally composed of the block of type K3 and a block
of type K4. For the latter, the “conventional Wong sequence” is trivial, i.e.,

W(�)
λ = {0}; for the former, the conventional Wong sequence reaches Ckj

after kj steps. Therefore, for any λ ∈ iR ∪ {∞} the Wong sequence W(�)
λ

of an E4 block fulfills W(kj)
λ = span{e1, e2, . . . , ekj}. Since this subspace is

E-neutral, we may apply the statement that for the conventional and neutral

Wong sequences there holds W(�)
λ = V(�)

λ if W(�)
λ is E-neutral. Hence, we have

Vλ = Wλ = span{e1, e2, . . . , ekj}.
3. Lur’e equations and deflating subspaces of even matrix pencils. Solv-

ability and structure of the solution set of the Lur’e equations (1.1) are described in
[40]. In particular, the eigenstructure of the associated even matrix pencil sE−A (1.9)
can be related to solutions of (1.1) in a way that these define deflating subspaces via

(3.1)

⎡⎣ 0 −sI +A B
sI +A∗ Q S

B∗ S∗ R

⎤⎦⎡⎣X 0
In 0
0 Im

⎤⎦ =

⎡⎣ In 0
−X K∗JV
0 L∗JV

⎤⎦[−sI +A B
V ∗K V ∗L

]
,

where V ∈ Cp,m is a matrix with V ∗V = Ip and im(V ) = im([K , L]). The property
X = X∗ is equivalent to this deflating subspace being E-neutral.

Definition 3.1. Let A,Q ∈ Cn,n, B,S ∈ Cn,m, and R ∈ Rm,m be given with
Q = Q∗, R = R∗. Further, let J ∈ Rm,m be a signature matrix. Then a solution X ∈
Cn,n of the Lur’e equations (1.1) with X = X∗ is called stabilizing (antistabilizing) if

(3.2) rank

[−λI +A B
K L

]
= n+ p for all λ ∈ C

+ (λ ∈ C
−).

Condition (3.2) is equivalent to the KCF of the pencil[−sI +A B
K L

]
having the following properties: All blocks of type K4 are of size 1× 0 and, moreover,
all generalized eigenvalues having nonpositive (nonnegative) real part. Note that in
the case of invertible R the concept of (anti-) stabilizing solution introduced above
coincides with the corresponding notion for algebraic Riccati equations [32]. For the
sake of brevity and analogy, we mainly focus on stabilizing solutions in this article.
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1350 FEDERICO POLONI AND TIMO REIS

Remark 3.2 (stabilizing solutions).

(a) It is shown in [40] that, in the case J = Im, a stabilizing solution X is maxi-
mal, where the word “maximal” has to be understood in terms of definiteness.
More precisely, all other solutions Y of the Lur’e equations fulfill X ≥ Y . In
an analogous way, antistabilizing solutions are minimal with respect to defi-
niteness.

(b) If J = −Im, a statement reverse to (a) holds true: The stabilizing solution is
minimal; the antistabilizing solution is maximal with respect to definiteness.
This holds true since we can lead back this setup to the case J = Im by
a simple substitution (X,Q, S,R)� (−X,−Q,−S,−R).

(c) If J is indefinite, there is no relation between extremality and (anti-) stabi-
lizability of solutions.

As we have seen in (3.1), solutions to Lur’e equations define E-neutral deflating
subspaces of the even matrix pencil (1.9). It is shown in [40] that also the converse
holds true; that is, the solutions of the Lur’e equations can be constructed from
certain E-neutral deflating subspaces of sE − A. First we collect several necessary
and sufficient criteria for the existence of a stabilizing solution of the Lur’e equations
(1.1). In particular, criteria in terms of the EKCF of (1.9) are presented. Thereby
we need the following two criteria:

P1 All blocks of type E2 in the EWCF of sE − A have even size.
P2 All blocks of type E3 in the EWCF of sE − A have odd size.

Theorem 3.3. Let A,Q ∈ C
n,n, B,S ∈ Cn,m, and R ∈ Rm,m be given with

Q = Q∗, R = R∗. Further, let J ∈ Rm,m be a signature matrix. Let the pencil sE −A
be as in (1.9), let the spectral density function Φ(s) ∈ C(s)m,m be as in (1.3). Then
the following holds true:

(a) If a solution of the Lur’e equations (1.1) exists, then for all ω ∈ R such that
iω is not an eigenvalue of A, the spectral density function fulfills n+(Φ(iω)) ≤
n+(J) and n−(Φ(iω)) ≤ n−(J).

(b) If a solution of the Lur’e equations (1.1) exists, then sE − A fulfills P1 and
P2. Furthermore, the number of blocks of type E3 with positive (negative) sig-
nature does not exceed maxω∈R\{−iσ(A)} n+(Φ(iω)) (resp., maxω∈R\{−iσ(A)}
n−(Φ(iω))).

(c) If a stabilizing solution of the Lur’e equations (1.1) exists, then (A,B) is
stabilizable.

(d) Assume that J = Im (J = −Im): If P1 and P2 hold true, then all blocks of
type E3 in the EWCF of sE −A have positive (negative) sign and, moreover,
at least one of the properties
(i) the pair (A,B) is stabilizable and the pencil sE−A as in (1.9) is regular;
(ii) the pair (A,B) is controllable;
is fulfilled, then a stabilizing solution of the Lur’e equations (1.1) exists.

Proof. Statement (a) follows from a brief verification of (1.2) and (1.4). The first
part of assertion (b) is shown in [3]. The signature conditions in (b) can be derived
from [18, Lemma 5.2]. Condition (c) follows immediately from the definition of the
stabilizing solution in (3.2). Criterion (d) has been shown, for J = Im, in [40]. The
case of negative definite J can be proven analogously.

Remark 3.4 (solvability of Lur’e equations).

(a) The work [3] presents a further criterion that is sufficient for the existence of
both a stabilizing solution and an antistabilizing solution: In the case where
R is invertible, these exist, if for all x ∈ Cn holds
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x∗(sI−A)−1B(R+B∗(−sI−A∗)−1Q(sI−A)−1B)B∗(−sI−A∗)−1 ∈ R(s)\{0}.

Note that, if R is positive definite, this condition reduces to controllability of
(A,B).

(b) In the case where J ∈ {±Im}, solvability of the Lur’e equations can be
characterized by the feasibility of a linear matrix inequality [3].

(c) It follows from (3.1) that for p = rank[K L], the number of blocks of type E4
in the EKCF of sE −A equals m− p. If, additionally, there holds rankR = p
and J ∈ {±Im}, there exists a unitary transformation with

U∗
1RU1 =

[
R1 0
0 0

]
, U∗

2LU1 =

[
L1 0
0 0

]
, U∗

2K =

[
K1 0
0 0

]
,

where L1, R1 ∈ Cp,p are invertible and K ∈ Cp,n. By partitioning BU1 =
[B1 , B2], SU1 = [S1 , S2], the Lur’e equations are now equivalent to

A∗X +XA+Q± (XB1 + S1)R
−1
1 (XB1 + S1)

∗ = 0,

XB2 + S2 = 0.

This is equivalent to the constrained Riccati equations (1.7) that originally
have been introduced in [26, 48]. Note that the above approach is not pos-
sible if rankR < p, which is equivalent to the EKFC containing blocks of
type E3. This is in accordance with the solvability criteria for constrained
Riccati equations in [26, 48]: For an extended Hamiltonian matrix pencil
(which can be transformed to the even pencil (1.9) via simple row trans-
formations), solvability of (1.7) has been related to the absence of infinite
eigenvalues.
A simple example that illustrates that Lur’e equations treat a more general
case is the following: For n = m = 1, consider A = Q = B = S = 1, J = −1
and R = 0. The Lur’e equations then read 2X + 1 = −K2, X + 1 = −KL,
0 = −L2. These have the unique solution X = −1. Using R+ = 0, the
constrained Riccati equation reads 2X+1 = 0, X+1 = 0. The latter system
is however unsolvable.

The stabilizing solution can be explicitly constructed from deflating subspaces of
the even matrix pencil (1.9): It is shown in [40, 3] that the extended graph space

(3.3a) GX = im

⎡⎣X 0
In 0
0 Im

⎤⎦
of the stabilizing solution X fulfills GX = Vs, where

(3.3b) Vs =

( ∑
λ∈C−

Wλ

)
+

(∑
λ∈iR

Vλ

)
+ V∞.

In other words, for matrices Vμ, Vx ∈ Cn,n+m, Vu ∈ Cm,n+m with

(3.3c) im

⎡⎣Vμ

Vx

Vu

⎤⎦ = Vs,
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there holds X = VμV
−
x , where V −

x ∈ Cn+m,n is an arbitrary right inverse of Vx,
i.e., V −

x Vx = I. Moreover, we have rankC(s)(sE − A) = rank[K , L ] + 2n. Besides
being crucial for all of our numerical considerations in this paper, the correspon-
dence (3.3) also provides us an equivalent criterion for the solvability of the Lur’e
equations (1.1).

Theorem 3.5 (see [3, 40]). Let A,Q ∈ Cn,n, B,S ∈ Cn,m, and R ∈ Rm,m be
given with Q = Q∗, R = R∗. Further, let J ∈ Rm,m be a signature matrix, and let
Vs be defined as in (3.3b). Then a stabilizing solution of the Lur’e equations (1.1)
exists if and only if dimVs = n+m and for matrices Vμ, Vx ∈ Cn,n+m, Vu ∈ Cm,n+m

with (3.3c). Then a stabilizing solution exists if and only if rankVμ = n. In this case,
there holds X = VμV

−
x .

Remark 3.6. In the case where the matrices A, Q, B, S, and R are all real, then
the space V∞ is real, too. Since the spaces Wλ + Wλ and Vμ + Vμ are real as well
for any generalized eigenvalues λ ∈ C−, μ ∈ iR, it can be verified that the stabilizing
solution is real in this case. Note that all numerical algorithms that will be introduced
in this paper avoid complex arithmetic if A, B, S, Q, and R are all real.

The following result is a direct conclusion from the relations in (3.3). It is shown
that the stabilizing solution of the Lur’e equations satisfies a certain identity with the
matrices generating some deflating subspace V̆ of sE − A with

(3.4) V̆ ⊂ Vs.

Corollary 3.7. Let A,Q ∈ Cn,n, B,S ∈ Cn,m, and R ∈ Rm,m be given with
Q = Q∗, R = R∗. Further, let J ∈ Rm,m be a signature matrix. Assume that the
Lur’e equations (1.1) have a stabilizing solution. Let V̆ be an r-dimensional deflating
subspace of sE − A such that (3.4) holds true. Then, for V̆μ, V̆x ∈ C2n+m,r, V̆u ∈
C2n+m,r with

(3.5) V̆ = im

⎡⎣V̆μ

V̆x

V̆u

⎤⎦ ,

there holds ker V̆x ⊂ ker V̆μ. Moreover, the stabilizing solution X of (1.1) satisfies

XV̆x = V̆μ.

Remark 3.8. Note that for any deflating subspace V̆ with (3.4), the space

V̆ + ({0} × {0} × C
m)

is an E-neutral deflating subspace which is also a subset of GX . Hence we can make
use of Corollary 3.7 to see that it is no loss of generality to assume that

(3.6) V̆ = im

⎡⎣V̆μ 0

V̆x 0
0 Im

⎤⎦
︸ ︷︷ ︸

=:V̆

.

Furthermore, V̆ has full column rank if and only if V̆x has full column rank. Therefore,
we may assume in the following that V̆x has a left inverse V̆ −

x , i.e., the relation
V̆ −
x V̆x = I holds true.

3.1. Projected Lur’e equations. Now we extend some of the terminology
and solution theory to projected Lur’e equations (1.11) with (1.12). These equations
will occur in later parts after a certain transformation of standard Lur’e equations.
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DEFLATION OF LARGE-SCALE LUR’E EQUATIONS 1353

In theory, we may change coordinates so that the equations are equivalent to a
system of Lur’e equations of smaller dimension. Namely, for T ∈ Gln(C) with

(3.7a) Π = T diag(I, 0)T−1,

conditions (1.12) imply

T−1ÃT =

[
Ã11 0
0 0

]
, T ∗X̃T =

[
X̃11 0
0 0

]
, T ∗Q̃T =

[
Q̃11 0
0 0

]
,(3.7b)

T−1B̃ =

[
B̃1

0

]
, T ∗S̃ =

[
S̃1

0

]
,(3.7c)

and we are led back to Lur’e equations in standard form

(3.8)

Ã∗
11X̃11 + X̃11Ã11 + Q̃11 = K̃∗

1JK̃1,

X̃11B̃1 + S̃1 = K̃∗
1JL̃,

R̃ = L̃∗JL̃.

In practice, we would like to avoid this transformation for numerical reasons.
Definition 3.9. We say that X̃ is a (stabilizing) solution of the projected Lur’e

equations (1.11) if there holds

(3.9) im

⎡⎣X̃ 0
Π 0
0 I

⎤⎦ =

⎡⎣Π∗ 0 0
0 Π 0
0 0 I

⎤⎦ ·
(( ∑

λ∈C−
W̃λ

)
+

(∑
λ∈iR

Ṽλ

)
+ Ṽ∞

)
,

where W̃λ, Ṽλ, and Ṽ∞ are the corresponding spaces obtained by the (neutral) Wong
sequences of the even pencil

(3.10) sẼ − Ã =

⎡⎢⎣ 0 −sΠ+ Ã B̃

sΠ∗ + Ã∗ Q̃ S̃

B̃∗ S̃∗ R̃

⎤⎥⎦ .

It follows immediately that X̃ is the stabilizing solution of the projected Lur’e
equations (1.11) with (1.12) if and only if X̃11 with (3.7) is the stabilizing solu-
tion of the reduced Lur’e equations (3.8). As a consequence, Theorem 3.3 can be
suitably generalized to the projected case. In particular, solvability of the projected
Lur’e equations (1.11) with (1.12) implies that the pencil sẼ − Ã as in (1.9) fulfills P1
and P2.

4. Partial solutions and projected Lur’e equations. If we have computed
some deflating subspace V̆ = im V̆ ⊂ GX for some matrix V̆ as in (3.6) with full
column rank, then Corollary 3.7 provides information on the action of X on a certain
subspace.

In this section, we show that the “remaining part” of the stabilizing solution X
solves projected Lur’e equations. As explained in Remark 3.8, we may assume that
for V̆ as in (3.6), the submatrix V̆x ∈ Cn,n̆ possesses a left inverse V̆ −

x ∈ Cn̆,n. The
matrix

(4.1) Π = In − V̆xV̆
−
x ∈ C

n,n
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1354 FEDERICO POLONI AND TIMO REIS

is therefore a projector along im V̆x. Expanding the stabilizing solution X of the Lur’e
equations (1.1) as

X = Π∗XΠ+ (I −Π)∗X +Π∗X(I −Π),

the relation X(I −Π) = XV̆xV̆
−
x = V̆μV̆

−
x gives rise to

X = Π∗XΠ+ (V̆ −
x )∗V̆ ∗

μ +Π∗V̆μV̆
−
x(4.2)

= Π∗XΠ+ (V̆ −
x )∗V̆ ∗

μ + V̆μV̆
−
x − (V̆ −

x )∗V̆ ∗
x V̆μV̆

−
x .

As a consequence, the problem of solving the Lur’e equations for X is reduced to the
problem of solving for X on a subspace complementary to im V̆x. We therefore speak
of partially solving the Lur’e equations. We describe in what follows that the matrix
Π∗XΠ is indeed a solution of certain projected Lur’e equations (1.11).

Multiplying A∗X + XA + Q = K∗JK (a) from the left with Π∗ and from the
right with Π, (b) from the left with V̆ ∗

x and from the right with Π, and (c) from the
left with V̆ ∗

x and from the right with V̆x yields

Π∗A∗Π∗XΠ+Π∗XΠAΠ+Π∗(A∗(V̆ −
x )∗V̆ ∗

μ + V̆μV̆
−
x A+Q)Π = (KΠ)∗J(KΠ),

(4.3a)

V̆ ∗
x A

∗Π∗XΠ+ V̆ ∗
x A

∗(V̆ −
x )∗V̆ ∗

μΠ+ V̆ ∗
μAΠ+ V ∗

x QΠ = (KV̆x)
∗J(KΠ),(4.3b)

V̆ ∗
x A

∗V̆μ + V̆ ∗
μAV̆x + V̆ ∗

x QV̆x = (KV̆x)
∗J(KV̆x).(4.3c)

Furthermore, a multiplication of B∗X + S∗ = L∗JK from the right with (a) Π and
(b) V̆x gives

B∗Π∗XΠ+ (B∗(V̆ −
x )∗V̆ ∗

μ + S∗)Π =L∗J(KΠ),(4.4a)

B∗V̆μ + S∗V̆x =L∗J(KV̆x).(4.4b)

Then (4.3) and (4.4) imply that by setting

K̃ = KΠ, L̃ =
[
KV̆x L

]
,

then X̃ = Π∗XΠ fulfills the projected Lur’e equation (1.11) with matrices

(4.5)

Ã = ΠAΠ,

Q̃ = Π∗(A∗(V̆ −
x )∗V̆ ∗

μ + V̆μV̆
−
x A+Q)Π,

B̃ =
[
ΠAV̆x ΠB

]
,

S̃ =
[
Π∗V̆μV̆

−
x AV̆x +Π∗A∗V̆μ +Π∗QVx Π∗(S + V̆μV̆

−
x B)

]
,

R̃ =

[
V̆ ∗
x A

∗V̆μ + V̆ ∗
μAV̆x + V̆ ∗

x QV̆x V̆ ∗
μB + V̆ ∗

x S

B∗V̆μ + S∗V̆x R

]
.

Conversely, the above computations imply that if X̃ solves the projected Lur’e equa-
tions, then X as in (4.2) solves the original Lur’e equations (1.1). In particular, there
holds p̃ = p.

In the following, we show that this reduction also preserves the property of
X̃ = Π∗XΠ being stabilizing.
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Theorem 4.1. Let A,Q ∈ Cn,n, B,S ∈ Cn,m, and R ∈ Rm,m be given with
Q = Q∗, R = R∗. Further, let J ∈ Rm,m be a signature matrix. Assume that
the Lur’e equations (1.1) have a stabilizing solution. Let V̆ ⊂ C2n+m be a deflating
subspace of the even matrix pencil (1.9) with

{0} × {0} × C
m ⊂ V̆ ⊂

( ∑
λ∈C−

Wλ

)
+

(∑
λ∈iR

Vλ

)
+ V∞

and

(4.6) V̆ = im V̆ = im

⎡⎣V̆μ 0

V̆x 0
0 Im

⎤⎦
for some V̆x ∈ Cn,n̆ with full column rank. Let Π = In − V̆xV̆

−
x , where V̆ −

x ∈ Cn̆,n

fulfills V̆ −
x V̆x = In̆. Then X is the stabilizing solution of the Lur’e equations (1.1) if

and only if X̃ = Π∗XΠ is a stabilizing solution of the projected Lur’e equations (1.11)
with matrices as in (4.5).

Proof. By the definition of deflating subspace, there exists a matrix W ∈ C
2n+m,k

with rankW = k and a pencil sĔ − Ă ∈ C[s]k,n̆+m with rankC(s)(sĔ − Ă) = k and

(sE − A)V̆ = W̆ (−sĔ + Ă). In particular, the equation⎡⎣−V̆x 0

V̆μ 0
0 0

⎤⎦ = EV̆ = W̆ Ĕ

implies that Ĕ =
[
Ĕ1 0k,m

]
for some Ĕ1 ∈ Ck,n̆ with rank Ĕ1 = n̆. By a suitable

change of coordinates in W , we can therefore assume that

−sĔ − Ă =

[−sIn̆ + Ă11 Ă12

Ă21 Ă22

]
,

and thereby, for some for some matrices W̆12, W̆22 ∈ C
n,k−n̆, W̆32 ∈ C

m,k−n̆,

W =

⎡⎣ V̆x W̆12

−V̆μ W̆22

0 W̆32

⎤⎦ .

Let Tx ∈ Cn,n−n̆ with Tx = ΠTx ∈ Cn,n−n̆. Then
[
V̆x Tx

]
is a nonsingular (square)

matrix and

im

⎡⎣X 0
In 0
0 Im

⎤⎦ = im

⎡⎣V̆μ XΠ 0

V̆x Π 0
0 0 Im

⎤⎦ = im

⎡⎣V̆μ XTx 0

V̆x Tx 0
0 0 Im

⎤⎦ ,

and the rightmost matrix has full column rank. Hence there exist matrices
W13,W23 ∈ Cn,n+p−k,W33 ∈ Cn,n+p−k, andE13, A13 ∈ Cn̆,n−n̆, E23, A23 ∈ Ck−n̆,n−n̆,
and E33, A33 ∈ Cn+p−k,n−n̆ with
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1356 FEDERICO POLONI AND TIMO REIS⎡⎣ 0 −sI +A B
sI +A∗ Q S

B∗ S∗ R

⎤⎦⎡⎣V̆μ 0 XTx

V̆x 0 Tx

0 Im 0

⎤⎦
︸ ︷︷ ︸
=:V ∈C2n+m,m+n

=

⎡⎣ V̆x W̆12 W13

−V̆μ W̆22 W23

0 W̆32 W33

⎤⎦
︸ ︷︷ ︸

=:W∈C2n+m,n+p

⎡⎣−sIn̆ + Ă11 Ă12 −sE13 +A13

Ă21 Ă22 −sE23 +A23

0 0 −sE33 +A33

⎤⎦
︸ ︷︷ ︸

=:−sẼ+Ã∈C[s]n+p,m+n

.

The solution X is stabilizing if and only if −λẼ + Ã has full column rank for all
λ ∈ C+. Due to our choice of the subspace V̆ , this holds if and only if −λE33 + A33

has full row rank for all λ ∈ C+. Now consider the matrices

MV̆ =

⎡⎣Π∗ (V̆ −
x )∗V̆ ∗

μΠ V̆μ 0 (V̆ −
x )∗

0 Π V̆x 0 0
0 0 0 Im 0

⎤⎦ , M−
V̆ =

⎡⎢⎢⎢⎢⎣
Π∗ −Π∗V̆μV̆

−
x 0

0 Π 0

0 V̆ −
x 0

0 0 Im
V̆ ∗
x −V̆ ∗

μ 0

⎤⎥⎥⎥⎥⎦.
Then we have MV̆M

−
V̆ = I and

M∗
V̆(sE − A)MV̆ =

⎡⎢⎢⎢⎢⎢⎣
0 −sΠ+ Ã B̃1 B̃2 0

sΠ∗ + Ã∗ Q̃ S̃1 S̃2 M̃1

B̃∗
1 S̃∗

1 R̃11 R̃12 M̃2

B̃∗
2 S̃∗

2 R̃∗
12 R̃22 M̃3

0 M̃∗
1 M̃∗

2 M̃∗
3 0

⎤⎥⎥⎥⎥⎥⎦ ,

with Ã and Q̃ as in (4.5),

M̃1 = Π∗AV −
x , M̃2 = sI + V̆ ∗

x AV̆x, M̃3 = B∗(V̆x)
∗,

and

B̃ =
[
B̃1 B̃2

]
, S̃ =

[
S̃1 S̃2

]
, R̃ =

[
R̃11 R̃12

R̃∗
12 R̃22

]
.

Then an evaluation of the matrix products in

(M∗
V̆(sE − A)MV̆) · (M−

V̆ V ) = (M∗
V̆W ) · (−sẼ + Ã)

leads to ⎡⎢⎢⎢⎢⎢⎣
0 −sΠ+ Ã B̃1 B̃2 0

sΠ∗ + Ã∗ Q̃ S̃1 S̃2 M̃1

B̃∗
1 S̃∗

1 R̃11 R̃12 M̃2

B̃∗
2 S̃∗

2 R̃∗
12 R̃22 M̃3

0 M̃∗
1 M̃∗

2 M̃∗
3 0

⎤⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
0 0 Π∗XTx

0 0 Tx

In̆ 0 0
0 Im 0
0 0 0

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 W̃12 W̃13

0 W̃22 W̃23

0 W̃32 W̃33

0 W̃42 W̃43

In̆ W̃52 W̃53

⎤⎥⎥⎥⎥⎦ ·
⎡⎣−sIn̆ + Ă11 Ă12 −sE13 +A13

Ă21 Ă22 −sE23 +A23

0 0 −sE33 +A33

⎤⎦
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for some matrices W̃ij of suitable dimensions. Canceling the last row of this equation
and, furthermore, realizing that the last block column of the matrix pencil on the left
hand side has no influence on the product, we obtain

(4.7)

⎡⎢⎢⎢⎣
0 −sΠ+ Ã B̃1 B̃2

sΠ∗ + Ã∗ Q̃ S̃1 S̃2

B̃∗
1 S̃∗

1 R̃11 R̃12

B̃∗
2 S̃∗

2 R̃∗
12 R̃22

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎣
0 0 Π∗XTx

0 0 Tx

In̆ 0 0
0 Im 0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0 W̃12 W̃13

0 W̃22 W̃23

0 W̃32 W̃33

0 W̃42 W̃43

⎤⎥⎥⎦ ·
⎡⎣−sIn̆ + Ă11 Ă12 −sE13 +A13

Ă21 Ă22 −sE23 +A23

0 0 −sE33 +A33

⎤⎦

=

⎡⎢⎢⎣
W̃12 W̃13

W̃22 W̃23

W̃32 W̃33

W̃42 W̃43

⎤⎥⎥⎦ ·
[
Ă21 Ă22 −sE23 +A23

0 0 −sE33 +A33

]
.

By our choice of Tx, the matrix before the first equal sign has full column rank and
spans the subspace in (3.9). Thus, X̃ is a stabilizing solution of the projected Lur’e
equations if and only if −λE33 +A33 has full row rank for all λ ∈ C+.

Theorem 4.2. Under the assumptions and notation of Theorem 4.1, the follow-
iung statements hold true for the pencil sẼ − Ã in (3.10):

(a) If, for λ ∈ C−, there holds Wλ ⊂ V̆, then the EKCF of sẼ − Ã does not have
blocks of type E1 corresponding to the generalized eigenvalue λ. Moreover,
all blocks of type E4 in the EKCF of sẼ − Ã are of size 1× 1.

(b) If, for λ ∈ iR, there holds Vλ ⊂ V̆, then the EKCF of sẼ − Ã does not have
blocks of type E2 corresponding the the generalized eigenvalue λ. Moreover,
all blocks of type E4 in the EKCF of sẼ − Ã are of size 1× 1.

(c) If there holds V∞ ⊂ V̆, then all blocks of type E3 and E4 in the EKCF of

sẼ − Ã are of size 1× 1.
Moreover, X̃ is the stabilizing solution of the projected Lur’e equations (1.11)

if and only if X̃ fulfills the projected algebraic Riccati equation

(4.8a) Ã∗X̃ + X̃Ã− (X̃B̃ + S̃)R̃+(X̃B̃ + S̃)∗ + Q̃ = 0, X̃ = Π∗X̃Π

with the additional property that all generalized eigenvalues of the pencil

(4.8b) −sΠ+ Ã− B̃R̃+(X̃B̃ + S̃)∗

are in iR ∪ C−.
Proof. Solvability of the projected Lur’e equations implies that, in the EKCF of

sẼ − Ã, all blocks of type E2 have even size and all blocks of type E3 have odd size.
Assume that Ṽ ∈ C

2n+m,n−n̆+m, W̃ ∈ C
2n+m,n−n̆+p, sÊ − Â ∈ C[s]n−n̆+m,n−n̆+p

with im Ṽ = im X̃ × imΠ× C
m+n̆ and

(sẼ − Ã)Ṽ = W̃ (sÊ − Â).

Then the following connection between the EKCF of sẼ − Ã and the KCF of sÊ − Â
holds true:
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(i) The EKCF of sẼ −Ã has a block of type E1 with size 2kj×2kj corresponding
to the generalized eigenvalues λ,−λ with λ ∈ C− if and only if the KCF of
sÊ − Â a block of type K1 with size kj corresponding to the generalized
eigenvalue λ.

(ii) The EKCF of sẼ −Ã has a block of type E2 with size kj×kj corresponding to

the generalized eigenvalue λ ∈ iR if and only if the KCF of sÊ− Â a block of
type K1 with size kj/2× kj/2 corresponding to the generalized eigenvalue λ.

(iii) The EKCF of sẼ − Ã has a block of type E3 with size kj × kj if and only if

the KCF of sÊ − Â a block of type K2 with size (kj + 1)/2× (kj + 1)/2.

(iv) The EKCF of sẼ − Ã has a block of type E4 with size (2kj − 1)× (2kj − 1)

if and only if the KCF of sÊ − Â a block of type K3 with size (kj − 1)× kj .

By (4.7), we may assume that sÊ − Â is of the form

sÊ − Â =

[
Ă21 Ă22 −sE23 +A23

0 0 −sE33 +A33

]
.

Now using Lemma 2.9 we obtain the following facts:
(i’) If, for λ ∈ C−, there holds Wλ ⊂ V̆, then λE33 −A33 has full row rank.
(ii’) If, for λ ∈ iR, there holds Vλ ⊂ V̆ , then λE33 −A33 has full row rank.
(iii’) If V∞ ⊂ V̆ , then E33 has full row rank.

Statements (a) and (b) of Theorem 4.2 are then immediate consequences of (i), (ii),
(iv), (i’), and (ii’). It remains to show (c): If V∞ ⊂ V̆, then, by (iii’), we have that

E33 has full row rank. Assuming that the EKCF of sẼ − Ã has a block of type E3
which is of size greater than 1× 1, we obtain by (ii) that the KCF of[

Ă21 Ă22 −sE23 +A23

0 0 −sE33 +A33

]
has a block of type K2 with size greater than 1× 1. Then there exist nonzero vectors

z0 =

[
z01
z02

]
, z1 =

[
z11
z12

]
with [

z01
z02

]∗ [
0 0 E23

0 0 E33

]
= 0,[

z01
z02

]∗ [
Ă21 Ă22 A23

0 0 A33

]
=

[
z11
z12

]∗ [
0 0 E23

0 0 E33

]
.

Since
[
Ă21 Ă22

]
has full row rank, the latter equation gives rise to z01 = 0. The

first equation together with E33 having full row rank then implies z02 = 0. This is
a contradiction.

To complete the result, we have to show that the projected Lur’e equations can
be transformed into a projected Riccati equation, if V∞ ⊂ V̆ : Since the blocks of
type E3 and E4 in the EKCF of sẼ − Ã have size at most 1, the Wong sequence

V(�)
∞ = W(�)

∞ stagnates at � = 1. In particular, ker L̃ = ker R̃ ⊂ ker B̃ ∩ ker S̃, as
otherwise the sequence would continue. This implies

K̃∗JK̃ = (B̃X̃ + S̃)∗R̃+(B̃X̃ + S̃).
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Plugging this into Ã∗X̃ + X̃Ã + Q̃ = K̃∗JK̃, we obtain that X̃ solves the projected
Riccati equation (4.8a). Furthermore, since[

−sΠ+ Ã B̃

K̃ L̃

] [
I 0

−L̃−K̃ I

]
=

[
−sΠ+ Ã− B̃R̃−(X̃B̃ + S̃)∗ B̃

0 L̃

]
,

the finite generalized eigenvalues of −sΠ + Ã − B̃R̃−(X̃B̃ + S̃)∗ equal to those of
sEX −AX , i.e., they are contained in iR ∪ C−.

Remark 4.3. In many cases of practical relevance, such as in the positive real
lemma [2], the bounded real lemma [1], in H∞ control [21] or the case of positive
semidefinite cost functional [50], that is[

Q S
S∗ R

]
≥ 0,

there is an a priori knowledge of the stabilizing solution X being semidefinite. Then,

we can choose V̆ −
x in a special way that simplifies the expressions (4.5). Consider

the matrix G := V̆ ∗
x XV̆x = V̆ ∗

μ V̆x = V̆ ∗
x V̆μ. Since X ≥ (≤)0, we have G ≥ (≤)0 and

ker V̆μ ⊂ kerG, and thus we can write V̆μ = W̆G for some W̆ ∈ C
n,n̆. Then, for a left

inverse V̆ −
x of V̆x, we can verify that

V̆ =
x = (In̆ −G+G)V̆ −

x +G+V̆ ∗
μ

is another left inverse of V̆x and satisfies

V̆ ∗
μ (In − V̆xV̆

=
x ) = V̆ ∗

μ − (G−GG+G)V̆ −
x −GG+GW̆ ∗ = V̆μ −GW̆ ∗ = 0.

Therefore, if we use V̆ =
x instead of V̆ −

x in our computations, then V̆ ∗
μΠ = 0 holds.

With this additional property, the matrices in (4.5) simplify to

(4.9)

Ã = ΠAΠ, Q̃ = Π∗QΠ, B̃ =
[
ΠAV̆x ΠB

]
,

S̃ =
[
Π∗A∗V̆μ +Π∗QV̆x Π∗S

]
,

R̃ =

[
V̆ ∗
x A

∗V̆μ + V̆ ∗
μAV̆x + V̆ ∗

x QV̆x V̆ ∗
μB + V̆ ∗

x S

B∗V̆μ + S∗V̆x R

]
,

and, by (4.2), the stabilizing solution is given by

(4.10) X = X̃ + V̆μG
+V̆ ∗

μ ,

where X̃ is the stabilizing solution of the projected Lur’e equations (1.11) with ma-

trices as in (4.9). In particular, given a solution X̃ = ±Z̃Z̃∗ in factored form, we
obtain a factorization X = ±ZZ∗, where Z = [Z̃ V̆μY̆ ] and Y̆ is some matrix with

±Y̆ Y̆ ∗ = G. Solutions in this factored form are essential in balancing-related model
order reduction and are provided by several algorithms for the solution of algebraic
Riccati equations [8, 6].

5. Numerical aspects. The results in Theorems 4.1 and 4.2 can be used to de-
velop an algorithm for the computation of the stabilizing solutions of Lur’e equations.
The raw procedure can be outlined as follows.
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(1) For � = 1, 2, . . ., determine matrices V
(�)
∞ with full column rank and V(�)

∞ =

imV
(�)
∞ , until they stagnate to V∞ = imV∞.

(2) Solve the projected Riccati equation (4.8a) for X̃.

(3) Add a low-rank term to X̃, according to (1.10) or (4.10), to recover the
solution of the Lur’e equation.

As Riccati solvers in step 2, we can use algorithms suited for large-scale problems
[6, 41], which typically return solutions in low-rank factored form. As we see in the
following, it is possible to adapt these algorithms to work in our setting of projected
Riccati equations preserving the necessary sparsity. The first two steps are described
in more detail in the next subsections.

Remark 5.1.

(a) In practically relevant examples, we often have m � n and further, so the
Wong sequence corresponding to the infinite eigenvalue usually stagnates after
only a couple of steps. Therefore, step (1) is extremely fast, and the bulk of
the computation is in step (2).

(b) The first step involves many successive nullspace determinations and may
therefore be arbitrarily ill-conditioned. However, these kernels can often be
obtained from considerations on structural properties of the system, e.g., in
the equations of the generalized positive real lemma for equations of linear
electrical circuits [38]. To exemplify this statement, we will consider a prac-
tically relevant class of problems in Example 5.4.

(c) The first step could, by Theorems 4.1 and 4.2, be extended by computing
the Wong sequences corresponding to eigenvalues with negative real part,
or neutral Wong sequences corresponding to purely imaginary generalized
eigenvalues.

(d) The approach of deflating “critical eigenvalues” can be also applied to alge-
braic Riccati equations. If some critical generalized eigenvalues of the even
matrix pencil (or, equivalently, some critical eigenvalues of the Hamiltonian
matrix [32]) are known a priori, these can be deflated to obtain a projected
algebraic Riccati equation with nicer structural properties.

5.1. Computation of Wong sequences. While basis matrices of the spaces
of Wong sequences are in principle explicitly computable from (2.5) and (2.8), some
care is required in the implementation, especially in the case of a large-scale problem.

An essential step in the computation of the Wong sequence corresponding to a gen-
eralized eigenvalue λ ∈ C (note that infinite eigenvalues can be treated analogously)
is the determination of the preimage

W(�)
λ = (λE − A)−1(EW(�−1)

λ ).

This can be done as follows. Consider basis matrices T , U , V of ker(λE − A)∗,
ker(λE − A), and EW(�−1)

λ , respectively, and S a basis matrix of kerT ∗V . Notice
that the equation (λE − A)x = b is solvable if and only if T ∗b = 0, thus imV S =
imV ∩im(λE−A). In particular, the equation (λE−A)X = V S is solvable and for any

solution X , there holds W(�)
λ = imX + imU . This computation is feasible whenever

T and U are stably computable or explicitly available due to structural properties of
the involved matrices.

Note that, if sE−A ∈ C[s]M,N is a regular pencil, then imXk∩imU = {0}. In this
case, line 14 in Algorithm 1 can be replaced with Wk :=

[
Xk U

]
. Furthermore, since
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Algorithm 1. Computation of Wλ.

Data: a matrix pencil sE − A ∈ C[s]M,N , λ ∈ C ∪ {∞}
Result: a basis matrix Wk of Wλ

1 if λ = ∞ then
2 M := E , N := A;
3 else
4 M := λE − A, N := E ;
5 end
6 Compute a basis matrix T of kerM∗;
7 Compute a basis matrix U of kerM;
8 W1 := U , k := 1;
9 repeat

10 k := k + 1;
11 Zk := NZk−1;
12 Compute a basis matrix S of kerT ∗Wk;
13 Solve MXk = ZkSk for the matrix Xk;

14 Compute a basis matrix Wk of im
[
Xk U

]
;

15 until rankWk = rankWk−1;

Wk,Wk−1 have full column rank, the stop criterion rankWk = rankWk−1 reduces to
a simple comparison of the numbers of rows of Wk and Wk−1.

For λ ∈ iR ∪ {∞} and an even matrix pencil sE −A, the computation of a basis

matrix of Vλ additionally involves the step Z(�)
λ ∩ (Z(�)

λ )E⊥. Computation of the latter
subspace is based on the following result.

Lemma 5.2. For skew-symmetric E ∈ CN,N and U ∈ CN,M , there holds

imU ∩ (imU)M⊥ = U · ker(U∗EU).

Proof. For w ∈ ker(U∗EU), simple arithmetic leads to Uw ∈ imU ∩ (imU)E⊥.
Hence, imU ∩ (imU)E⊥ ⊃ U · ker(U∗EU).

For showing the converse inclusion, let u = Uw ∈ imU ∩ (imU)E⊥. Then, by
Uw ∈ (imU)E⊥, there holds (Uw)∗EU = 0, whence w ∈ ker(U∗EU). This gives rise to

u = Uw ∈ U · ker(U∗EU).

Using this result, we can extend Algorithm 1 to determine the E-neutral deflating
subspace corresponding to a generalized eigenvalue λ ∈ iR ∪ {∞}. Note that, for
λ ∈ iR, the matrix λE − A is Hermitian. Since, moreover, E is skew-Hermitian, we
may choose T = U in the notation of Algorithm 1.

Remark 5.3.

(a) Some further extensions are possible to further improve numerical efficiency
in the computation of Wλ and Vλ. For instance, we may consider at every

step only a basis of a space P(�) such that V(�−1)
λ ⊕ P(�) = V(�)

λ . However, in
the case where dimVλ is small, this improvement is only very little.

(b) In the computation of V∞ for the even matrix pencil sE − A as in (1.9),
the structure of the pencil can be exploited in several parts of the computa-

tion. Namely, we know in advance that U =
[
0m,n 0m,n Im

]T
, V1 = R,

multiplication by N = A can be performed exploiting the sparsity and/or
low rank properties of A and Q, and Xk = E+(VkSk) = −EVkSk. Then the
computation in line 13 in Algorithm 1 reduces to Zk = [Xk , U ].
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Algorithm 2. Computation of Vλ.

Data: an even matrix pencil sE − A ∈ C[s]N,N , λ ∈ iR ∪ {∞}
Result: a basis matrix Vk of Vλ

1 if λ = ∞ then
2 M := E , N := A;
3 else
4 M := λE − A, N := E ;
5 end
6 Compute a basis matrix U of kerM;
7 Z1 := U , V1 := U , k := 1;
8 repeat
9 k := k + 1;

10 Vk := NVk−1;
11 Compute a basis matrix Sk of kerU∗Vk;
12 Solve MXk = VkSk for the matrix Xk;

13 Compute a basis matrix Zk of im
[
Xk U

]
;

14 Compute a basis matrix Yk of kerZ∗
kEZk;

15 Compute a basis matrix Vk of im
[
Vk ZkYk

]
;

16 until rankVk = rankVk−1;

An important issue to discuss is the numerical stability of the rank determinations.
In Algorithms 1 and 2, all rank determinations take the form of computing basis
matrices for images or kernels of some explicitly computed matrixM ; this can be done
using the SVD; all rank decisions correspond now to choosing a threshold under which
the computed singular values are considered to be zero. In a similar fashion to the
implementation of MATLAB’s orth and null functions, in our we used computations
the convention that a singular value σk of a p× q matrix is considered to be zero if

(5.1) σk ≤ max(p, q)σ1ε,

where we chose ε = u1/2, with u ≈ 2.2 · 10−16 the machine precision. However, it is
simple to keep track of the sensitivity of this decision; in our experiments, we checked
which values ε ≥ u would yield the same result if plugged in the previous expression.
A narrow interval means that the rank decisions are ill-posed.

The following example underlines that structural properties of the system may be
employed to obtain a basis matrix of V∞ without numerically invoking Algorithm 2.

Example 5.4 ((strictly) positive real systems). As mentioned in the introduction,
one of the important applications of Lur’e equations is in the positive real lemma [2]:
Given are matrices A ∈ Rn,n and B,CT ∈ Rn,m with the property that (A,B) is
controllable and G(s) = C(sI − A)−1B ∈ R(s)m,m fulfills G(λ) + G(λ)∗ ≥ 0 for
all λ ∈ C+, the Lur’e equations (1.1) with R = 0, Q = 0, S = −CT , and J = −Im
are known to admit a positive definite stabilizing solution X . Indeed, Φ(s) = −G(s)−
G(−s)T is a spectral density function corresponding to the Lur’e equations from the
positive real lemma. A subclass of particular interest are the so-called strictly positive
real systems [49]. That is, there exists some ε > 0 such that G(λ) +G(λ)∗ > 0 for all
λ ∈ C with Re(λ) > −ε. It is shown in [49] that this is equivalent to

(i) G(iω) +G(iω)∗ > 0 for all ω ∈ R and

(ii) lim
ω→∞ω2(G(iω) +G(iω)∗) > 0.D
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Note that, by using a special congruence transformation of iωE −A (see (3.1) in [40]),
it can be shown that property (i) implies that the associated even matrix pencil does
not have any generalized eigenvalues on the imaginary axis. Moreover, by forming the
Laurent expansion G(s) =

∑∞
k=1 s

−kCAkB, it follows that property (ii) is equivalent
to CB = BTCT > 0 and CAB +BTATCT > 0.

Now we perform Algorithm 2 to determine the space V∞: Since V(1)
∞ = kerE , we

can choose U = V1 =
[
0 0 Im

]
. Using that CB is symmetric, we obtain in the

second step that

Z2 = V2 =

⎡⎣−CT 0
−B 0
0 Im

⎤⎦ .

A basis matrix of E−1(A · imV2) is then given by

Z3 =

⎡⎣ATCT CT 0
−AB B 0
0 0 Im

⎤⎦ .

To determine a basis matrix V3, we need to consider the kernel of the matrix

Z∗
3EZ3 =

⎡⎣CA2B −BT (AT )2CT −CAB −BTATCT 0
CAB +BTATCT 0 0

0 0 0

⎤⎦ .

Using that CAB + BTATCT > 0, we have kerZ∗
3EZ3 = {0} × {0} × Rm. As a con-

sequence, we have V3 = V2, i.e., the algorithm stagnates here.
According to Theorem 4.1, the stabilizing solution fulfills XB = C. In the no-

tation of Theorem 4.1, we have V̆x = B and V̆μ = CT . To determine the projected
algebraic Riccati equation describing the “remaining part,” we make use of CB > 0
to construct a left inverse V̆ −

x = (CB)−1C of V̆x. The projector (4.1) is consequently
given by Π = I − B(CB)−1C; the remaining projected Riccati equation reads, in
compact form,

0 = (ΠAΠ)T X̃ + X̃(ΠAΠ)

+ (X̃ΠAB −ΠTATCT )(CAB +BTATCT )−1(X̃ΠAB −ΠTATCT )T .

5.2. Numerical solution of projected Riccati equations. We consider pro-
jected Riccati equations

(5.2a) A∗
RX̃ + X̃AR +HR − X̃GRX̃ = 0, X̃ = Π∗X̃Π

with

(5.2b) AR = ΠARΠ, HR = Π∗HRΠ, GR = ΠGRΠ
∗.

These are obtained from Lur’e equations after the deflation process described in
Theorems 4.1 and 4.2 (see section 4 for computational issues) with matrices

(5.3) AR =Ã− B̃R̃+S̃∗ HR =Q̃− S̃R̃+S̃∗, GR =B̃R̃+B̃∗.

In theory, a change of coordinates with T as in (3.7) transforms this equation into a
conventional algebraic Riccati equation bordered by zero blocks:
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A∗

R11 0
0 0

] [
X̃11 0
0 0

]
+

[
X̃11 0
0 0

] [
AR11 0
0 0

]
+

[
HR11 0
0 0

]
−
[
X̃11 0
0 0

] [
GR11 0
0 0

] [
X̃11 0
0 0

]
=

[
0 0
0 0

]
.

(5.4)

However, we aim to solve the projected algebraic Riccati equation (5.2) without actu-
ally changing coordinates as above, in order to preserve sparsity. Different numerical
methods exist for the solution of large-scale AREs; for instance, the Newton–Galerkin
method in [9] or the Newton–Kleinman method [31] coupled with an effective method
for solving the resulting Lyapunov equations, such as the ADI iteration [6], the K-PIK
method [41], or in the symmetric case direct Riemannian optimization methods [45].
If the quadratic term is indefinite (which corresponds to indefinite J), the method of
Lanzon et al. [33] may be applied.

Note that the Newton–Kleinman method is quadratically convergent if the pencil

−sΠ+ Ã− B̃R̃+(X̃B̃ + S̃)∗

does not have purely imaginary generalized eigenvalues or, equivalently, the EKCF of
sẼ − Ã does not have any blocks of type E2. By Theorem 4.2, the latter property is
fulfilled if sE − A does not have any imaginary generalized eigenvalues or if∑

λ∈iR

Vλ ⊂ V̆ .

Moreover, all these methods apart from the last are essentially based on rational
Krylov subspaces and the solution of a large number of linear systems of the form

(5.5) (AR11 + pI)x1 = b1 or (A∗
R11 + pI)x1 = b1,

for suitable vectors x1, b1 ∈ Cn−n̆.
In the case of our projected Riccati equation, the key feature that allows us to

preserve sparsity is that we can recover the solution of these linear systems through
computations involving A only, without having to apply explicitly the change of basis
T or the projector Π, which would destroy sparsity. We focus on the first of the two
forms, as the other case is essentially the same. Indeed, if x1 solves the first system
in (5.5), then [

AR11 + pI 0
0 pI

] [
x1

0

]
=

[
b1
0

]
.

So instead of x1 and b1 we can get implicitly the solution of the same linear system
by solving

(AR + pIn)
−1x = b, x := T

[
x1

0

]
, b := T

[
b1
0

]
.

The aforementioned algorithms for the Riccati equation (5.4) can then be rewritten
by working only with vectors in the form

(5.6) v = T

[
v1
0

]
;

this transformation indeed preserves both rational Krylov subspaces built upon A
and linear system solutions. Numerical drift in the zero in the second component
can be corrected by reapplying the projector Π, and the initial values needed for the
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Krylov subspaces are typically obtained from the low-rank factors of HR11 and are
thus naturally obtained in the form (5.6) when we compute the low-rank factors of
HR. In no place in these algorithms need we apply explicitly the change of basis T .

If one wishes to have the linear system matrix explicitly represented as a sparse
matrix, rather than as the expression AR = ΠAΠ − B̃R̃+S̃∗ with Π = In − V̆xV̆

−
x ,

this is possible by considering the extended system⎡⎢⎢⎣
A+ pI B̃ V̆x AV̆x

R̃+S̃∗ Ip 0 0

V̆ −
x A− V̆ −

x AV̆xV̆
−
x 0 In̆ 0

V̆ −
x 0 0 In̆

⎤⎥⎥⎦
⎡⎢⎢⎣
x
x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
b
0
0
0

⎤⎥⎥⎦ .(5.7)

We can see that x in (5.7) solves (AR + pI)∗x = b. If the dimension of the space V̆ as
in (3.6) is moderate and A is sparse, then the extended system matrix can be stored in
sparse form. Therefore by writing the system in this form we can use a direct sparse
solver (such as sparse LU) or general preconditioners (such as incomplete LU).

6. Numerical examples. As a numerical experiment, we consider Lur’e equa-
tions arising in the positive real lemma [2] (see also Example 5.4): Given are matri-
ces A ∈ Rn,n and B,CT ∈ Rn,m with the property that (A,B) is controllable and
G(s) = C(sI −A)−1B ∈ R(s)m,m fulfills G(λ) +G∗(λ) ≥ 0 for all λ ∈ C+, the Lur’e
equations (1.1) with R = 0, Q = 0 and S = −CT and J = −Im are known to admit
a positive definite stabilizing solution X ∈ Rn,n.

In the considered examples, we have A+A∗ ≤ 0 and B = CT , which implies pos-
itive realness of G(s). We have taken dynamical systems in the benchmarks examples
demo_m1, demo_r1, and demo_r3 from the MATLAB library LYAPACK library [35].

For the corresponding Lur’e equations, we compute the subspace V̆ = V∞ by
Algorithm 2. The generalized inverse V̆ −

x has been chosen in a way that V̆ ∗
μΠ = 0

(see Remark 4.3). The obtained projected algebraic Riccati equation (5.2) is solved
with the Newton–Kleinman-ADI method using the LYAPACK.

We use the library by providing a custom solver for both shifted and unshifted
linear equations, according to the remarks in section 5.2. In particular, we rely on the
library’s heuristic for the choice of the shift parameters. In the considered examples,
the Newton–Kleinman iteration may be stably initialized with X(0) = 0. After ob-
taining the solution X̃ of the projected Riccati equation, we recover the Lur’e solution
as X = X̃ + V̆μV̆

−
x .

Computations were done on Intel Core 2 Duo CPU E6750 @2.66GHz with machine
precision u = 2.22 × 10−16 using MATLAB R2010b. We report the results of the
experiments in Table 6.1. The relative residual of the Lur’e equations is measured as

Res =

∥∥∥∥L(X)−
[
K∗

L∗

]
J
[
K L

]∥∥∥∥
F

‖L(X)‖F
, L(X) =

[
A∗X +XA+Q XB + S

B∗X + S∗ R

]
,(6.1)

where the missing solution components K and L are computed by truncating to rank
m an eigendecomposition of L(X). Notice that in most application only X is needed,
so we need only this expensive computation if we want to check the residual.

To check whether the computed solution is the stabilizing one, we construct the
reduced pencil associated to this deflating subspace

sÊ − Â =

[−sI +A B
K L

]D
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Table 6.1

Results of the numerical experiments.

demo_m1 demo_r1 demo_r3

n 408 2500 821
m 1 1 6
n̆ 1 1 6
Rtol (see (6.3)) (2.22× 10−16,

1.412,7× 10−03)
(2.22 × 10−16,
1.563,3 × 10−04)

(2.22 × 10−16,
1.092,7× 10−06)

ADI itns for computing X(1) 41 39 44

rank of X(1) 25 24 138

rank of X −X(1) 28 23 130
number of Newton steps 8 4 7
avg. ADI itns / Newton step 32.25 37.25 36.857
Res (see (6.1)) 2.430,6× 10−07 2.591,8 × 10−15 3.457,9× 10−15

Stab (see (6.2)) −2.851,6× 10−09 −1.776,4 × 10−15 −1.316,0× 10−08

CPU time (seconds) 5.519,1× 10+00 1.712,2 × 10+01 6.466,0× 10+01

according to (3.1), and we check whether its Cayley transform s(Â+ Ê)− (Â− Ê) has
only eigenvalues larger than 1, since this Cayley transform maps the left half-plane
onto the exterior of the unit disc. We report on our table the value of

(6.2) Stab = min
λ∈σ(s( ̂A+̂E)−( ̂A−̂E))

|λ| − 1;

we expect Stab ≥ −c · 10−8 for a moderate constant c > 0 based on the preceding
discussion. Indeed, due to R = 0, in all our problems the EKCF of the corresponding
even matrix pencil sE−A as in (1.9) has at least one block of type E3 with size greater

than or equal to 3× 3. This implies that the KCF of sÊ − Â contains a block K2 of
size at least 2× 2; therefore, the sensitivity of the eigenvalue 1 in the computation of
Stab is

√
u.

Moreover, following the discussion at the end of section 5.1, we reported a stability
measure for the rank decisions in the Wong sequence computation. Namely, we report
the interval

(6.3) Rtol = (ε−, ε+)

of values ε that we can plug in (5.1) without modifying the rank decisions. The width
of this interval indicates that the difference in norm between the computed neglected
and nonneglected singular values. In all cases we have a decay in the singular values
that is sharp enough to ensure that the rank determination is well conditioned.

7. Conclusion. We have considered a constructive approach to the determina-
tion of the stabilizing solution of Lur’e equations. Based on the correspondence of
the solution set to E-neutral deflating subspaces of an associated even matrix pencils
sE − A, we transform the Lur’e equations to a projected algebraic Riccati equation.
This equation can be solved using the standard large-scale Riccati solvers, with some
minor modifications for dealing with the projected part. In particular, the sparsity
properties are preserved along the algorithm. Altogether, this provides a new method
for the low-rank approximative numerical solution of large-scale Lur’e equations.
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